

SUPPORTING INFORMATION

OPEN PORTION OF THE MEETING

MONDAY, 28 OCTOBER 2019 AT 5:00 PM VENUE: LADY OSBORNE ROOM, TOWN HALL

TABLE OF CONTENTS

7.1.3		oad (CT 160085/3 and CT 126957/1) South Hobart - Partial Washdown Facility and Associated Works	
	Attachment D	PLN-19-200 - 30 MCROBIES ROAD SOUTH HOBART TAS 7004 - CPC Supporting Documents	2

Report Prepared for:

City of Hobart

Prepared by:

Environmental Management & Consulting Pty Ltd

ABN: 17 273 533 294

Office/ Mail: Level 2, 67 Letitia St, North Hobart 7000, Tasmania

Assessment design, project supervision and	Simon Chislett	EN VIRON
report review by:	Principal Environmental Engineer, B.Eng (Env) Hons Environmental Management & Consulting Pty Ltd Certified Environmental Practitioner,	2019/2020 ENV 14
	Contaminated Site Specialist (CEnvP CS, EIANZ)	10/11/24 App
	EIANZ Certified Environmental Practitioner No: 1160	CONTAMA
	EIANZ Site Contamination Specialist No: SC400112 Email: simon@enviromac.com.au	STATION OF THE PROPERTY OF THE
Field work and reporting completed by:	Alex Lovibond, Senior Environmental Scientist, B.S Environmental Management & Consulting Pty Ltd	ic (Env), LLB (Env)

DOCUMENT REVISION RECORD

DOCO	DOCONENT REVISION RECORD	
Rev	Date	Details of Revisions
ROO	07/8/19	Draft PCLC Environmental Site Assessment Prepared
RO1	07/08/19	PCLC Environmental Site Assessment Provided to Client

TABLE OF CONTENTS

	LIS	T OF COMMON REPORT ABBREVIATIONS	5
1.	INT	RODUCTION	7
2.	ОВ	JECTIVE	7
3.	AP	PLICATION OF WORSCOPE TO PLANNING SCHEME	8
4.	AS	SESSMENT FRAMEWORK	9
5.	SIT	E DESCRIPTION/SETTING	10
5	.1.	Site Identification Information	10
5	.2.	Land Use	10
5	.3.	Topography	12
5	.4.	Hydrology	13
5	.5.	Geology	14
5	.6.	Hydrogeology	15
5	.7.	Identified Contaminating Industry/Activity	15
5	.8.	Contaminants of Potential Concern	16
5	.9.	Conceptual Site Model	16
6.	SAI	MPLING AND ANALYSIS QUALITY PLAN	18
7.	ASS	SESSMENT CRITERIA	20
8.	ESA	A WORKSCOPE	21
	8.1	.1. Soil Assessment	21
9.	RES	SULTS	22
9	.1.	Soil Field Observations	22
9	.2.	Soil Analytical Results v Land Use Criteria	22
9	.3.	Soil Analytical Results v TAS Soil Disposal Guidelines (IB105)	24
9	.4.	QA/QC Results	24
	9.4	.1. Comparability	24
PCLC	ESA R	eport, 30 McRobies Road, South Hobart, TAS	3

Page 5 ATTACHMENT D

				ENVIRONMENTAL MANAGEMENT & CONSULTING PTY
	9.4.2.	Precision		25
	9.4.3.	Accuracy		25
	9.4.4.	Representativenes	S	25
	9.4.5.	Completeness		25
LO.	CON	ICLUSIONS		26
11.	STA	TEMENT OF LIMITAT	TIONS	28
12.	REF	ERENCES		29
NITI	HIN TEXT			
	Figures	i		
		Figure 5.2	Local Area Land Zoning	

	0	8
	Figure 5.3	Local Area Topography
	Figure 5.4	Local Area Hydrology
	Figure 5.5	Local Area Geology
	Figure 5.9a	SW/NE Graphic Representation of CSM
	Figure 5.9b	NW/SE Graphic Representation of CSM
Tables		
	Table 5.1	Site Identification Information
	Table 5.2.1	Site Land Use Information
	Table 5.2.2	Land Zoning Legend
	Table 5.5	Local Geology Legend
	Table 6.0	Sampling and Analysis Quality Plan Summary
	Table 7.0	Adopted Site Assessment Investigation Levels
	Table 9.2	Summary of Investigation Criteria Exceedances
	Table 9.3	Summary of Waste Disposal Criteria Exceedances

ATTACHED

Figures

Figure 1 Site Location Plan
Figure 2 Sample Location Plan

Tables

Table 1a In-situ Soil Validation Analytical Results v Land Use Criteria: Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalene (BTEXN) and Polycyclic Aromatic Hydrocarbons (PAH)

Table 1b In-situ Soil Validation Analytical Results v Land Use Criteria: Metals and Soil

Properties

Table 2a In-situ Soil Validation Analytical Results v Waste Disposal Criteria: Total

Petroleum Hydrocarbons (TPH), Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalene (BTEXN) and Polycyclic Aromatic Hydrocarbons (PAH),

Cyanide, Fluoride and PCBs

Table 2b In-situ Soil Validation Analytical Results v Waste Disposal Criteria: Metals

Table 3 Soil Assessment QA/QC Results

LIST OF APPENDICES

Appendix A Design Documentation Provided by JMG

Appendix B Ecological Investigation Levels – Site Specific Calculation Sheet

Appendix C Laboratory Certificates of Analysis

Appendix D Assessment Data Quality Indicator (DQI)

Appendix E Assessment Field Logs & Calibration Certificates

Appendix F GIAP Search Results

LIST OF COMMON REPORT ABBREVIATIONS

ANZECC Australian and New Zealand Environment and Conservation Council

AST Above-ground Storage Tank

B(a)P Benzo(a)Pyrene

BTEX Benzene, Toluene, Ethylbenzene and Xylenes

CARE Contamination Assessment and Remediation of the Environment

• COC Chain Of Custody

COPC Contaminants Of Potential Concern
 CRC Cooperative Research Centre
 DO Dissolved Oxygen
 DQO Data Quality Objective

DNAPL Dense Non-Aqueous Phase Liquid

DSI Detailed Site Investigation

DTW Depth to Water
 EC Electrical Conductivity
 EIL Ecological Investigation Level

EM&C Environmental Management & Consulting Pty Ltd

ESA Environmental Site Assessment
 ESL Ecological Screening Level
 EPA Environment Protection Authority
 HIL Health Investigation Level
 HSL Health Screening Level
 LNAPL Light Non-Aqueous Phase Liquid

LOR Limit Of Reporting

MAH Monocyclic Aromatic Hydrocarbons
 mBGS Metres Below Ground Surface
 mTOC Metres below Top of Casing

NEPM National Environment Protection (Assessment of Site Contamination) Amendment

Measure 2013

PAH Polycyclic Aromatic Hydrocarbons

Pb Lead

PH Petroleum Hydrocarbon
 PID Photo-Ionisation Detector
 PSI Preliminary Site Investigation
 PVI Petroleum Vapour Intrusion
 RPD Relative Percentage Difference
 SAQP Sample Analysis and Quality Plan

TDS Total Dissolved Solids
 TOC Top Of Casing

• TPH/TRH Total Petroleum Hydrocarbons/ Total Recoverable Hydrocarbons

UST Underground Storage Tank
 VOC Volatile Organic Compound
 QA/QC Quality Assurance/ Quality Control

List of Abbreviated Measurement Units

m: metre	L: Litre	ppm: parts per million
km: kilometre	kL: kilolitre	ppb: parts per billion
mg/kg: milligram/ kilogram	mg/L: milligram/ litre	
μg/kg: microgram/ kilogram	μg/L: microgram/ litre	

1. INTRODUCTION

This Potentially Contaminated Land Code Environmental Site Assessment (PCLC ESA) report has been prepared by Environmental Management & Consulting Pty Ltd (EM&C) to enable the City of Hobart to assess the proposed development for 30 McRobies Road, South Hobart (the 'site') against the provisions of the Potentially Contaminated Land Code (PCLC) – E2.6.2 of the Hobart Interim Planning Scheme 2015. The location of the site within the suburb of South Hobart and state of Tasmania is shown on attached Figure 1.

A copy of the design drawings for the proposed development have been provided to EM&C for consideration and are included for reference within Appendix A. In summary, the development proposal will include:

- Removal of current asphalt surface
- Excavation of:
 - Underlying sub-base;
 - o Earthen batter to eastern side of development area to enlarge trafficable area; and
 - Soil profile to to allow for the installation of a ~5,000L silt arrestor pit and 3,000L holding well.
- Installation/realignment of services;
- · Concrete resurfacing
- Reinstatement of asphalt
- Construction of steel, open ended structure.

EM&C have designed this assessment based on the supplied design documentation provided by Johnstone McGee and Gandy Pty Ltd (JMG), specifically drawing number C03, included within Appendix A. During the proposed development, the planned excavation works are to be confined to the proposed truck was bay area, to the remainder of the site. As a result, this assessment area has been confined to the proposed development area. This approach is justified based on the purpose of the Potentially Contaminated Land Code (PCLC) provided within the Hobart Interim Planning Scheme 2015 as to:

Ensure that use or development of potentially contaminated land does not adversely impact on human health or the environment.

The area of proposed disturbance is shown in red hatched shading on attached Figure 2 and is also the area of investigation by this PCLC ESA report.

2. OBJECTIVE

This PCLC ESA has been designed to address the requirements provided within the PCLC, to determine if the proposed development works involving excavation of potentially contaminated land... [will] ...adversely impact on health and the environment.¹

.

¹ PCLC E2.6.2, Hobart Interim Planning Scheme 2015

The objectives of the completed PCLC ESA were to determine:

- Whether any site contamination presents a risk to workers involved in redevelopment of the site, or future users of the site, as a result of proposed excavation of the site.
- Whether any site contamination presents an environmental risk from excavation conducted during redevelopment of the site.
- Whether any specific remediation and/or protection measures are required to ensure the proposed excavation does not adversely impact human health or the environment before excavation commences.
- If offsite disposal of soil is required, classify the soil within the definitions provided within the
 Tasmanian EPA publication Information Bulletin No. 105 Classification and Management of
 Contaminated Soil for Disposal.

3. APPLICATION OF WORSCOPE TO PLANNING SCHEME

This assessment seeks to assess the condition of the site against the performance criteria supplied within the planning scheme.

The proposed excavation at the site triggers the application of the Potentially Contaminated Land Code. Section E2 of the HCC Interim Planning Scheme 2015 identifies where the PCLC applies:

E2.2.1

This Code applies to:

- (a) a use, on potentially contaminated land, that is a sensitive use, or a use listed in a use class in Table E2.2.1 and is one of the uses specified as a qualification; or
- (b) development on potentially contaminated land.

Development is further defined within Section E2.6 to include either subdivision or excavation. The extent of excavation required to trigger the application of the PCLC through development is limited by Section E2.4.4, to only apply when the area of land disturbed by the development exceeds one square meter.

The code defines potentially contaminated land within Part E2.3.1:

- ...land that is, or adjoins land that the applicant or the planning authority:
 - a. Knows to have been used for a potentially contaminating activity by reference to: -
 - A notice issued in accordance with Part 5A of the Environmental Management and Pollution Control Act 1994; or

² Sensitive means a residential use or a use involving the presence of people for extended periods except in the course of their employment, such as in a caravan park, childcare centre, dwelling, hospital or school. *Hobart Interim Planning Scheme 2015 - Administration*

- ii. A previous permit; or
- b. Ought reasonably to have known was used for a potentially contaminating activity.

A list of potentially contaminating activities is provided within the planning scheme within Table E2.2.

The requirement for assessment was triggered by:

- The proposed area of excavation for the new concrete slab, plus additional excavation for the following items, estimated³ to total 43 cubic meters:
 - o Asphalt apron surrounding newly constructed slab
 - o Retaining wall construction
 - Service connection
- The identification by JMG of the following potentially contaminating activity occurring within the site boundary, located at 30 McRobies Road, South Hobart. The JMG report is included as Appendix A.
 - o Landfilling operations the property was used as a landfill.
 - The use of a site as a landfill satisfies the requirements of defining the site as
 potentially contaminated under the PCLC.

4. ASSESSMENT FRAMEWORK

The assessment work scope and sampling and quality analysis plan was developed in accordance with *The National Environment Protection (Assessment of Site Contamination) Measure (NEPM)* 1999 (2013 Amendment). This NEPM document has been adopted by the Tasmanian government as State Policy and can reasonably be referenced as the standard(s) of the EPA.

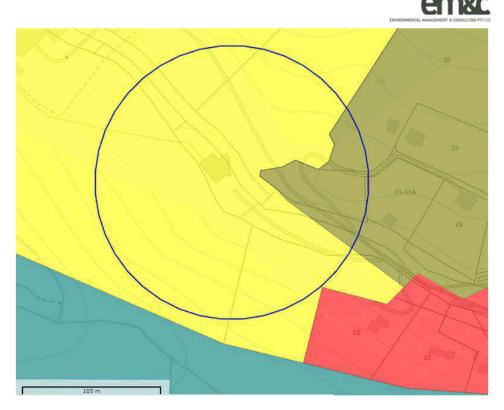
_

³ JMG Contamination Management Plan (April 2019)

5. SITE DESCRIPTION/SETTING

In accordance with the scope of this document, the following information is provided relative to the development/investigation area.

5.1. Site Identification Information


Table 5.1 Site Identification Information

Site Address	30 McRobies Road, South Hobart, 7004
Certificate of Title (CoT)	166085
	Ref: www.thelist.tas.gov.au (30 July, 2019)
Property Identification	3273346
Number (PID)	Ref: www.thelist.tas.gov.au (30 July 2019)
Approximate Location of	The approximated location of the site centroid is:
Area Under Assessment	E: 523876 N: 5251099 (GDA 94 MGA55)
	Ref: www.thelist.tas.gov.au (30 July 2019)

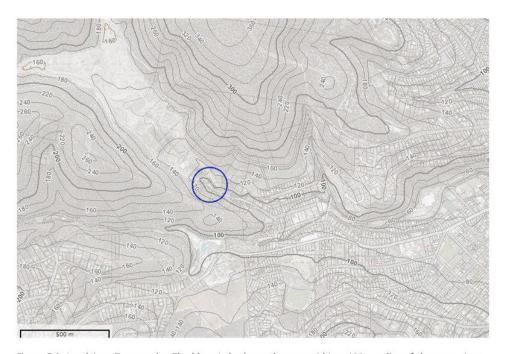
5.2. Land Use

Table 5.2.1 Site Land Use Information

Current Land Use	The property is classified as a commercial/industrial land use based on the definitions provided within Schedule B7 of the NEPM. The investigation area sits within an area currently covered by mostly asphalt, however a small cutting is to be made into the earthen embankment along the eastern edge of the investigation area.	
Current Site Zoning	The site is zoned '28.0 Utilities' under the Hobart Interim Planning Scheme, 2015.	
Surrounding Land Uses	 The land area to the west and south is predominately native bus land To the north lies a recycling centre To the east across McRobies road lie residential dwellings 	
Site Area	The investigation area has been limited to the area of development, which is approximately 150m².	

Figure 5.2. Local Area Land Zoning: The blue circle shows the area within a 100m radius of the approximate investigation area within the Site. Source: www.thelist.tas.gov.au. (July 2019). An explanation of the shading is provided within Table 5.2.2 below.

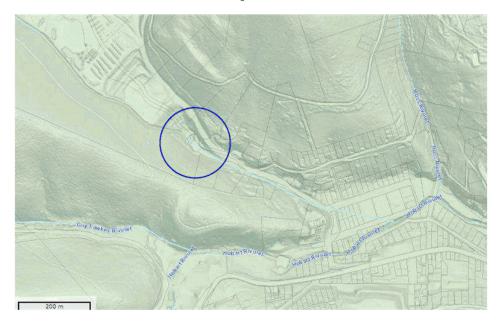
Table 5.2.2 Land Zoning Legend


Zoning Fill	Zoning ID	Zoning Description	
	14.0	Environmental Living (Hobart Interim Planning Scheme 2015)	
	10.0	General Residential (Hobart Interim Planning Scheme 2015)	
	28.0	Utilities (Hobart Interim Planning Scheme 2015)	
	29.0	Environmental Management (Hobart Interim Planning Scheme 2015)	

5.3. Topography

Mapped regional topography is shown below in Figure 5.3 and identifies that the investigation area sits within McRobies Gully, between two hill spurs running approximately northwest to southeast. The fall within the gully is predominantly towards the southeast.

The elevation of the investigation area is approximately 100mAHD, based on the topographic contours available from TheList (provided in Figure 5.3 below).


Figure 5.3. Local Area Topography: The blue circle shows the area within a 100m radius of the approximate investigation area within the Site. Source: www.thelist.tas.gov.au. (July 2019).

5.4. Hydrology

The nearest natural year-round surface water body down topographical gradient of the investigation area is Hobart Rivulet, located approximately 580m to the southeast. At this point along the river course the rivulet would be classified as a freshwater aquatic ecosystem.

It is assumed that historically a small, likely seasonal creek followed McRobies Gully. The development of a landfill within the gully however has caused significant disruption to natural stormwater flows. A leachate collection pond servicing the landfill lies approximately 15m upgradient of the investigation area, in addition stormwater pits are present within the asphalted area, diverting surface water flows into the constructed city stormwater system prior to discharging into the Hobart Rivulet. Figure 5.4 below identifies the local surface water bodies and their location relative to the investigation area.

Figure 5.4. Local Area Hydrology: The blue circle shows the area within a 100m radius of the approximate investigation area within the Site. Source: www.thelist.tas.gov.au. (July 2019).

5.5. Geology

The site is situated in a shallow valley in between Jurassic aged dolerite outcrops to the northeast and older Permian to Triassic sedimentary rock to the south and west. The mapped geology towards the northwest of the investigation area is cenozoic deposits, lining the gully floor. Due to the past history of landfilling within this area though, it is assumed that a significant depth of man-made waste overlies this unit.

Figure 5.5 below identifies the local are geological units, with Table 5.5 providing a description of each (source: www.thelist.tas.gov.au accessed July 2019).

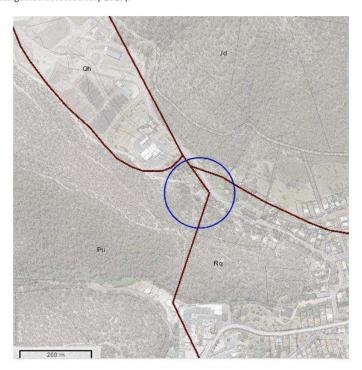


Figure 5.5 Local Area Geology, Source: www.thelist.tas.gov.au (July 2019)

Table 5.5 Local Geology Legend

Abbreviation	Unit Description
Qh	Cenozoic sand gravel and mud of alluvial, lacustrine and littoral origin. Inferred to be overlain by mad made deposits through landfilling activities.
Jd	Jurassic dolerite (tholeitic) with locally developed granophyre.
Rq	Upper Fluviolacustrine Sequence - Quartz Sandstone Sequence, forming part of the Upper Parmeener Supergroup
Pu	Upper glaciomarine sequences of pebbly mudstone, pebbly sandstone and limestone, forming part of the Lower Parmeener Supergroup

The site's shallow geology/soil horizons were logged as follows during the onsite investigation:

0.0 to 0.05mBGS Asphalt

0.0.5 to 0.9mBGS Very coarse sandy Medium GRAVEL some medium to coarse sand.

0.9 to 2.0mBGS Fine gravelly medium GRAVEL some coarse sand.

2.0 Onwards Unknown, maximum extent of investigation limited to 2.0mBGS.

Broadly, the material encountered below the ground surface to the investigation extent of 2m below ground surface has been interpreted to be imported compacted gravels, laid out to level out the floor of the gully. This was likely done during the construction of either the leachate collection system or other works pertaining to the landfill operation.

5.6. Hydrogeology

EM&C completed a search of Water Resources Tasmania's (WRT) Groundwater Information Access Portal (GIAP) in August 2019. This search identified one groundwater well approximately 625m towards the south of the investigation area. A copy of the report provided by the portal is provided within Appendix F (Ref: wrt.tas.gov.au, 2019).

The bore log for the identified offsite well (feature ID 17284) did not include a detailed record of the screening interval, however it was reported during the installation that water was first encountered at 48 meters below ground surface (mBGS).

The Contamination Management Plan Prepared by JMG (April 2019) identifies the presence of additional onsite groundwater monitoring bores. The wells identified the presence of a possible perched water bearing zone, located at approximately 1-1.5 mBGS.

5.7. Identified Contaminating Industry/Activity

The investigation area is located within the boundary of the McRobies Gully Landfill, specifically adjacent to the leachate collection ponds at the southern, down gradient section of the site. The operation of a landfill is categorised as a potentially contaminating activity by:

- The Tasmanian EPA within the defined category: 'Landfill sites, including on-site waste disposal and refuse pits'.⁴
- City of Hobart within the defined category: 'Landfill sites, including on-site waste disposal and refuse
 nits'5
- Australian Standard AS4482.1-2005 within the defined category: 'Landfill Sites'

PCLC ESA Report, 30 McRobies Road, South Hobart, TAS

⁴ Tasmanian EPA, 2019 Potentially Contaminating Activities, Industries and Land Uses

5.8. Contaminants of Potential Concern

The Contaminants of Potential Concern (COPC) associated with the onsite history include:

- Total Recoverable Hydrocarbons & Total Petroleum Hydrocarbons (TPH).
- Benzene, Toluene, Ethylbenzene, Xylenes and Naphthalene (BTEXN).
- Polycyclic Aromatic Hydrocarbons (PAH)
- Polychlorinated biphenyls (PCBs)
- Heavy metals

5.9. Conceptual Site Model

A Conceptual Site Model (CSM) organises site information in a clear structure to identify data gaps. A preliminary CSM includes identifying land use, past and current potential contamination sources, contaminants of potential concern, potential receptors and other site information available to simplify assessment planning and decisions. The CSM development is a dynamic process and the model should be reviewed and refined during all stages of an assessment (NEPC, 1999).

A graphic representation of the CSM for the investigation area within 30 McRobies Road is presented below in Figures 5.9a and 5.9b. The figures identify the current and proposed layout of the site in relation to the contaminating activities and the potential contamination pathways related to the source of contaminants. A summary of potential contamination sources, pathways and receptors are listed below the figures.

Purple shading indicates potentially contaminated imported fill.



Figure 5.9a SW/NE Graphic Representation of Conceptual Site Model, 30 McRobies Road, South Hobart

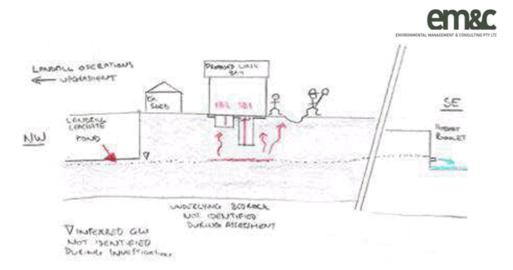


Figure 5.9b NW/SE Graphic Representation of Conceptual Site Model, 30 McRobies Road, South Hobart

Potential Contamination Sources/ Industry:

- Landfilling operations up topographical gradient. Landfill material may contain COPCs
- Landfill leachate detainment adjacent to development area. Leachate may contain COPCs
- Importation of potentially contaminated fill material into development area.
- Groundwater that may be potentially contaminated from the up gradient landfill or the adjacent leachate collection sump.

Potential Exposure Pathways

- Direct contact (dermal contact, inhalation of dust and ingestion of soil) with contaminated soil.
- · Migration of contaminated soil and sediments offsite during development
- Migration of contaminated groundwater downgradient to groundwater and surface waters.
 - o Not assessed as groundwater not encountered during assessment
- Migration of landfill leachate into groundwater.
 - $\circ \quad \text{Not assessed as groundwater not encountered during assessment} \\$
- Migration of vapour from soil contamination sources.
- Migration of vapour from groundwater contamination sources
 - o Not assessed as no vapour accumulation area
- Excavation and transport of soil offsite
- · Uptake of COPCs by ecological receptors

Potential Receptors

- Occupiers and visitors of the site.
- Subsurface workers, including services, maintenance and development works.
- Ecological receptors including flora and fauna
- Offsite soil receiving facilities (landfills).

6. SAMPLING AND ANALYSIS QUALITY PLAN

This Sampling and Analysis Quality Plan (SAQP) aims to provide sufficient supporting data to determine the contamination and waste categorisation status of the site and excavated material, relative to the nominated assessment criteria. It also aims to present all data with an acceptable level of confidence. The project SAQP is summarised in the table below. The location PCLC ESA sample locations are shown on attached Figure 2, Sample Location Plan.

Table 6.0 Sampling and Analysis Quality Plan Summary

Objective of assessment	To assess the area identified for excavation/ground disturbance works for evidence of soil contamination, which may determine if the development will adversely impact on human health or the environment. Should such a finding be found, identify any specific remediation and/or protections measures required to be implemented before excavation commences.	
	If offsite disposal of soil is required, classify the soil within the definitions provided within the Tasmanian EPA publication <i>Information Bulletin No. 105 Classification and Management of Contaminated Soil for Disposal.</i>	
Quality Control samples to be collected	For soil media: 1 duplicate per 20 samples provided to laboratory. 1 equipment rinsate per 20 samples. 1 laboratory prepared trip blank per day sampling.	
Media to be sampled	Soil.	
Analytes to be tested for primary samples	Soil: Total hydrocarbons, reported as TRH and TPH fractions, benzene, toluene, ethylbenzene, xylenes, naphthalene (BTEXN), Tasmanian IB105 regulatory suite (metals, cyanide, PCBs, OC pesticides, phenols and PAHs).	
Number of samples	Soil: Two soil bores (SB1 – SB2) to be completed with laboratory analysis of 4 discrete soil samples.	
	Sample density chosen to allow for in-situ soil classification for disposal at a density of > 1/25m³.	
	Each soil bore to be screened for Volatile Organic Compounds ('VOC') as a minimum of every half meter.	
Sampling methods	Soil: Samples for analysis to be taken from a clean decontaminated hand auger (rinsate blanks to confirm decontamination process). Where other methods of sampling are employed to obtain a sample, the method of collection should be clearly noted along with the sample results.	
Field Screening	Soil: Screening for VOCs at a minimum of each half metre using a photo ionisation detector (PID).	
Laboratory to be used	NATA accredited laboratory: ALS Environmental	

Relevant Risl Assessment Criteria Environmental Management and Pollution Control Act 1994 (EMPCA)

The National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (NEPM). The NEPM is state policy in Tasmania for the assessment of site contamination.

CRC Care (2011), Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater. Technical Report No. 10, Part 2: Application Document.

CRC Care (2013), Petroleum hydrocarbon vapour intrusion assessment: Australian guidance, Technical Report No.23, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.

Tasmanian EPA Information Bulletin 105 Classification and Management of Contaminated Soil for Disposal, November 2012.

7. ASSESSMENT CRITERIA

The adopted environmental assessment criteria are detailed in Table 7.0 below.

Table 7.0 Adopted Site Assessment Soil Investigation Levels

	Criteria	Land Use Scenario	Relevant for	Application										
	criteria	Land OSC Scenario	Assessment	·										
		HILA	No No	vestigation Levels										
		HIL A	No No	Not applicable.										
	Health		No No	Ni-t										
	Investigation	HIL C	No	Not applicable.										
	Levels	HIL D	Yes	Investigation area lies within an area that can broadly b defined as commercial/industrial under the definition provided within Schedule B7 of the NEPM										
		HSL A & HSL B	No	Not applicable: as above										
		HSL C	No											
	Health Screening Levels	HSL D	Yes	Assessment locations are situated within an area that can broadly be defined as commercial/industrial under the definitions provided within Schedule B7 of the NEPM										
	for Vapour Intrusion	IMW	Yes	It has been identified that intrusive maintenance wo could foreseeably occur at the site within t investigation area. This screening level will also appropriate for assessing the risk posed to construct workers during the proposed development excavation.										
		HSL A	No											
		HSL B	No	Not applicable										
		HSL C	No											
	Health Screening Levels for Direct	HSL D	Yes	Investigation area lies within an area that can broadly be defined as commercial/industrial under the definitions provided within Schedule B7 of the NEPM										
Soil	Contact	IMW	Yes	It has been identified that intrusive maintenance wo could foreseeably occur at the site within investigation area. This screening level will also appropriate for assessing the risk posed to construct workers during the proposed development excavation.										
	Ecology Based Investigation Levels													
	Ecological	Areas of ecological significance	No	Not applicable										
	Investigation and Screening Levels	Urban residential and public open space	No	Тосаррісаме										
	Levels	Commercial and industrial	No	Investigation area lies within an area that can broadly be defined as commercial/industrial under the definitions provided within Schedule B7 of the NEPM										
			ent Limits and A	esthetic Investigation Levels										
	Soil Management Limits for	Residential, parkland and public open space	No	Not applicable.										
	Petroleum Hydrocarbons	Commercial and industrial	Yes	Considered due to on-going commercial use.										
	Aesthetic Considerations	All	Yes	Applicable.										
			Offsite Disposal C	lassification Criteria										
	Controlled Waste Disposal Criteria	-	Yes	In-situ soil may not be suitable for onsite reuse. To determine the suitability for offsite disposal and to categorise the waste, the soil should be assessed against the Controlled Waste Disposal Criteria.										

8. ESA WORKSCOPE

The following work scope was completed to meet the assessment objective.

8.1.1. Soil Assessment

Mobilisation of two EM&C Environmental Consultants to site on 5 July 2019 to drill two soil bores, designated SB1 to SB2. All drilling locations are shown on attached Figure 2. The completed work scope comprised of:

- Logging of soil profile during and the field screening of soil samples collected from each completed soil bore at regular depth intervals and changes in soil type for the presence of VOCs using a photo ionisation detector (PID).
- The collection and laboratory analysis of four primary soil samples:
 - Screening and collection of samples at changes in soil type, areas of visible staining and diverse relative depths.
 - In order to identify hot spots, samples destined for analysis were selected based on where the level of contamination was expected to be the most significant.
 - The collection and laboratory analysis of the following field QA/QC sample:
 - One blind duplicate sample designated QCP_5/7/19, a duplicate of SB1_0.075-0.125.
 - Collection of samples into sterile glass jars and placement of these jars into a chilled and insulated esky.
 - Transportation of samples to a NATA-accredited laboratory for analysis of the schedule listed within the Sampling and Analysis Quality Plan (Section 6 above).
- The collection and analysis of additional QA/QA samples, an equipment rinsate blank and a trip blank soil sample.

9. RESULTS

The following section presents field observations, measurements and laboratory results. Laboratory results have been presented relative to:

- NEPM Tier 1 assessment criteria for identified potential receptors at the site.
- Tasmanian EPA Information Bulletin 105 Classification and Management of Contaminated Soil for Disposal, November 2012 criteria for potential offsite disposal categorisation.

'Sand' has been selected as the soil texture group⁶ most representative of the site's confining geology. Assessment drill logs are included within Appendix E.

9.1. Soil Field Observations

No detectable concentrations of VOCs were detected through the screening of collected soil samples using a PID.

9.2. Soil Analytical Results v Land Use Criteria

Summarised soil sample results assessing Contaminants of Potential Concern (COPC) are presented below within Table 9.2 and in attached Table 1a and 1b. Laboratory certificates of analysis are included within Appendix C.

_

⁶ Reference to soil texture groups as defined by United States Department of Agriculture (USDA)

Table 9.2 Summary of Investigation Criteria Exceedances

ıtion	(mBGS)		,	Residentia	ı			eational/ F Open Spac	e	Commo	ercial / Inc	Intrusive Maintenance Worker		
Sample Location	Sample Depth (mBGS)	нга	HIL B	HSLA (Direct Contact)	HSL B (Direct Contact)	HSLA/B (Vapour Intrusion)	HILC	HSL C (Direct Contact)	HSL C (Vapour Intrusion)	HIL D	HSL D (Direct Contact)	HSL D (Vapour Intrusion)	HSL IMW (Direct Contact)	HSL IMW (Vapour Intrusion)
	0.075 - 0.125	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE	NE
SB1	1.0-	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE	NE
	1.5- 1.6	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE	NE
SB2	0.5- 0.6	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE	NE

=	BGS)	Soil Manage	ment Limits	Ecological Criteria											
Sample Location	Sample Depth (mBGS)	Residential, Parkland & Public Open Space	Commercial & Industrial	EIL (Areas of Ecological Significance)	ESL (Areas of Ecological Significance)	EIL (Urban Residential & Public Open Space)	ESL (Urban Residential & Public Open Space)	EIL (Commercial & Industrial)	ESL (Commercial & Industrial)	Soil Saturation Concentration (Csat)					
	0.075 - 0.125	NA	NE	NA	NA	NA	NA	NE	NE	NE					
SB1	1.0- 1.1	NA	NE	NA	NA	NA	NA	NE	NE	NE					
	1.5- 1.6	NA	NE	NA	NA	NA	NA	NE	NE	NE					
SB2	0.5- 0.6	NA	NE	NA	NA	NA	NA	NE	NE	NE					

Table notes:
Highlighted values indicate an exceedance of the nominated criteria
NA: Indicates that investigation criteria not relevant for the specified sample point
NE: Indicates no exceedance of criteria

9.3. Soil Analytical Results v TAS Soil Disposal Guidelines (IB105)

Summarised soil sample results assessing COPCs against the Tasmanian Soil Disposal Guidelines 7 is provided below within Table 9.3 and attached Table 2a and 2b. A laboratory prepared comparative analytical report of the same samples is included within Appendix C.

Table 9.3 Summary of Waste Disposal Criteria Exceedances

_	365)		Tasmanian Waste Disposal Guidelines														
Sample Location	Sample Depth (mBGS)	Level 1 (Total Concentrations)	Level 2 (Total Concentrations)	Level 2 (Leachable Concentrations)	Level 3 (Total Concentrations)	Level 3 (Leachable Concentrations)	Classification										
	0.075- 0.125	Benzo(a)pyrene	NE	NA	NE	NA	Level 2										
SB1	1.0-1.1	NE	NE	NA	NE	NA	Level 1										
	1.5-1.6	NE	NE	NA	NE	NA	Level 1										
SB2	0.5-0.6	NE	NE	NA	NE	NA	Level 1										

Table notes:

Highlighted values indicate an exceedance of the nominated criteria

NA: Indicates that investigation criteria not relevant for the specified sample point

NE: Indicates no exceedance of criteria

9.4. QA/QC Results

Field QA/QC analytical results are presented in attached Table 3. Copies of the NATA endorsed laboratory reports, including internal QA/QC results and chain-of-custody documentation for the primary laboratory are included within Appendix C.

The findings of the projects precision, accuracy, representativeness, comparability and completeness data quality indicators (DQIs) are summarised within this section. In addition, a DQI checklist has been attached in Appendix D.

9.4.1. Comparability

- An appropriately experienced person in accordance with EM&C's Assessment Procedure detailed within the SAQP outlined in Section 6, collected all samples.
- The laboratory used was NATA-accredited for the requested analytes and provided documented methods of analysis.

⁷ Information Bulletin 105: Classification and Management of Contaminated Soil for Disposal (v3 2018)

9.4.2. Precision

Assessment of quality control data revealed:

- Soil field duplicates reported COPC concentrations within the assessment relative percentage difference (RPD) criteria^s for all duplicate samples taken.
- Non-conformity was observed within the following laboratory standards, calibration blanks and verifications. Internal Quality Control (QCI) reports are supplied within Appendix C and elaborated on further within the DQI checklist provided within Appendix D.

9.4.3. Accuracy

All field equipment was calibrated prior to use. See calibration certificates provided within Appendix E.

9.4.4. Representativeness

- All media identified in the project's SAQP in Section 6 have been sampled.
- All samples were put into containers provided by a NATA-accredited laboratory, stored in a chilled esky (soil) and transported to each laboratory within holding times. See Appendix C for laboratory sample receipt notices.
- Target analytes were not detected in trip blank or equipment rinsate blank samples.
- No inconsistencies were identified within the method of sample collection.
- No inconsistencies have been identified in laboratory methods.

9.4.5. Completeness

- All samples locations have been sampled in accordance with the SAQP.
- All samples were sent to each laboratory within technical holding times and with accurately completed documentation.
- EM&C considers the collected dataset sufficiently complete to be relied upon to support the assessments data quality objectives.

_

⁸ Which is calculated based on the primary result, relative to the primary laboratory LOR

10. CONCLUSIONS

At the completion of the Potentially Contaminated Land Code Environmental Site Assessment (PCLC ESA), undertaken to make an assessment of the proposed development, and subject to the assessment scope and statement of limitations (Section 11), EM&C conclude that:

- The assessed level of site contamination does not pose an unacceptable level of risk to workers
 involved in redevelopment of the site, or to future users of the site, as a result of proposed excavation.
- The assessed level of site contamination does not pose an unacceptable level of risk to either human health or the environment based on the proposed development and the scope of the assessment.
- Assessment of the material requiring excavation for the construction of the subterranean components of the development has found:
 - The material is suitable for onsite reuse as the reported level of contamination within the soil profile lies below the nominated investigation criteria for the investigation area.
 - The concentration of benzo(a)pyrene within the soil would presently see this material classified as Low Level Contaminated Soil/Level 2 under the Tasmanian waste classification guidelines IB105 if removed from the site.
 - Should the excavated material be removed from the investigation area, the soil is to be handled in accordance with Tasmanian Soil Disposal Guidelines⁹.

With consideration to the management methods identified within the *Contamination Management Plan* (April 2019) provided by JMG, EM&C provide the following advice:

- The risk controls proposed are a basic, well thought through default starting point for managing exposure risks on a site where little recent quantitative assessment has occurred.
- The recommendations relating to handling soil provided within Section 7 of the document, while
 potentially good industry practice, are largely unrequired.
 - EM&C endorse the preventative measures provided within Table 3 of the Contamination
 Management Plan (and listed below) with regard to:
 - Potential Risk of "Direct Contact with PCS" Recommended measures:
 - Personal Protective Equipment (PPE) to be worn by workers likely to come into contact with soil or equipment that is likely to come in contact with soil.
 PPE includes gloves, covered shoes, long pants and long sleeve shirts.
 - 2. Use PPE and avoid direct contact with soil
 - 3. Do not eat, drink or smoke in the work area
 - 4. Wash hands regularly and prior to eating and before leaving the site
 - Potential Risk of "Ingestion of PCS" Recommended measures:
 - 1. Do not have direct contact with the soil.
 - 2. Wear gloves during works where there is a likelihood of contact with soil.
 - 3. Provide hand washing facilities for workers close by.
 - 4. Avoid eating in the work area and wash hands before eating or drinking.

.

⁹ Information Bulletin 105: Classification and Management of Contaminated Soil for Disposal (v3 2018)

In addition to the above, adherence to Tasmanian Soil Disposal Guidelines is sufficient for risk
mitigation based on the observed level of site contamination.

With reference to the Potentially Contaminated Land Code of the Hobart Interim Planning Scheme 2015, clause E2.6.2 Excavation (b), the completed environmental site assessment has established, based on the plans provided:

- The planned 'excavation does not adversely impact on human health or the environment';
- Site contamination does not present an unacceptable risk to workers involved in redevelopment of
 the site, or future users of the site, as a result of proposed excavation of the site; and
- Should offsite disposal of excavated material be necessary, 'specific remediation and protection
 measures' are required to be implemented before excavation commences'
 - The measures required are identified within the Tasmanian Soil Disposal Guidelines (IB105), due to the identification of low level contaminated soil.

The report conclusions are made against both the existing and proposed future land use, as identified within the drafting plans (Appendix A). Further assessment may be required if a change to a more sensitive land use is proposed or the environmental condition of other areas of the site need to be assessed.

11. STATEMENT OF LIMITATIONS

This report has been prepared in accordance with the scope of services described in the contract or agreement between Environmental Management & Consulting Pty Ltd (EM&C) and the Client. The report relies upon data, surveys, measurements and results taken at or under the particular times and conditions specified herein. Any findings, conclusions or recommendations only apply to the aforementioned circumstances and no greater reliance should be assumed or drawn by the Client. Furthermore, the report has been prepared solely for use by the Client and EM&C accepts no responsibility for its use by other parties. The client agrees that EM&C's report or associated correspondence will not be used or reproduced in full or in part for promotional purposes and cannot be used or relied upon in any prospectus or offering.

No warranties express or implied are made. Subject to the Scope of Work, EM&Cs assessment is limited strictly to identifying typical environmental conditions associated with the subject property and does not include evaluation of the structural conditions of any buildings on the subject property or any other issues. Additionally unless otherwise stated EM&C did not conduct soil, air, wastewater or other matrix analyses including asbestos or perform contaminated sampling of any kind. Nor did EM&C investigate any waste material from the property that may have been disposed of off the site, nor related waste management practices.

The results of this assessment are based upon site inspection conducted by EM&C personnel, information from interviews with people who have knowledge of site conditions and information provided by regulatory agencies. All conclusions and recommendations regarding the property are the professional opinions of the EM&C personnel involved with the project, subject to the qualifications made above.

While normal assessments of data reliability have been made, EM&C assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of EM&C, or developments resulting from situations outside the scope of this project.

EM&C is not engaged in environmental auditing and /or reporting of any kind for the purpose of advertising sales promoting, or endorsement of any clients' interests, including raising investment capital, recommending investment decisions, or other publicity purposes. EM&C assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of EM&C, or developments resulting from situations outside the scope of this project.

Information relating to soil, groundwater, waste, air or other matrix conditions in this document is considered to be accurate at the date of issue. Surface, subsurface and atmospheric conditions can vary across a particular site or region, which cannot be wholly defined by investigation. As a result, it is unlikely that the results and estimations presented in this report will represent the extremes of conditions within the site that may exist. Subsurface conditions including contaminant concentrations can change in a limited period of time and typically have a high level of spatial heterogeneity.

From a technical perspective, there is a high degree of uncertainty associated with the assessment of subsurface, aquatic and atmospheric environments. They are prone to be heterogeneous, complex environments, in which small subsurface features or changes in geologic conditions or other environmental anomalies can have substantial impact on water, air and chemical movement.

Major uncertainties can also occur with source characterization assessment of chemical fate and transport in the environment, assessment of exposure risks and health effects, and remedial action performance. These factors make uncertainty an inherent feature of potentially impacted sites. Technical uncertainties are characteristically several orders of magnitude greater at impacted sites than for other kinds of projects.

EM&C's professional opinions are based upon its professional judgment, experience, and training. These opinions are also based upon data derived from the limited testing and analysis described in this report. It is possible that additional testing and analysis might produce different results and/or different opinions or other opinions. EM&C has limited its investigation(s) to the scope agreed upon with its client. EM&C believes that its opinions are reasonably supported by the testing and analysis that has been undertaken (if any), and that those opinions have been developed according to the professional standard of care for the environmental consulting profession in this area at this time. Other opinions and interpretations may be possible. That standard of care may change and new methods and practices of exploration, testing and analysis may develop in the future, which might produce different results.

 $\mathsf{EM\&C}$ is not in the business of providing legal advice

12. REFERENCES

Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand (2000) [Referenced as ANZECC 2000], Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1.

CRC Care (2011), Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater, Technical Report No. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.

CRC Care (2013), Petroleum hydrocarbon vapour intrusion assessment: Australian guidance, Technical Report No.23, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.

Friebel, E & Nadebaum, P 2011, Health screening levels for petroleum hydrocarbons in soil and groundwater.

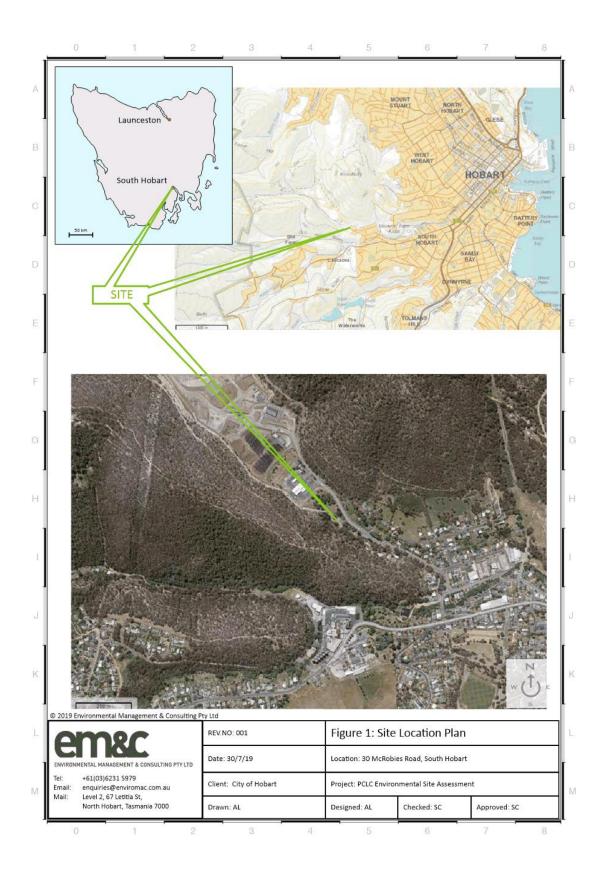
Part 1: Technical development document, CRC CARE Technical Report no. 10, CRC for Contamination

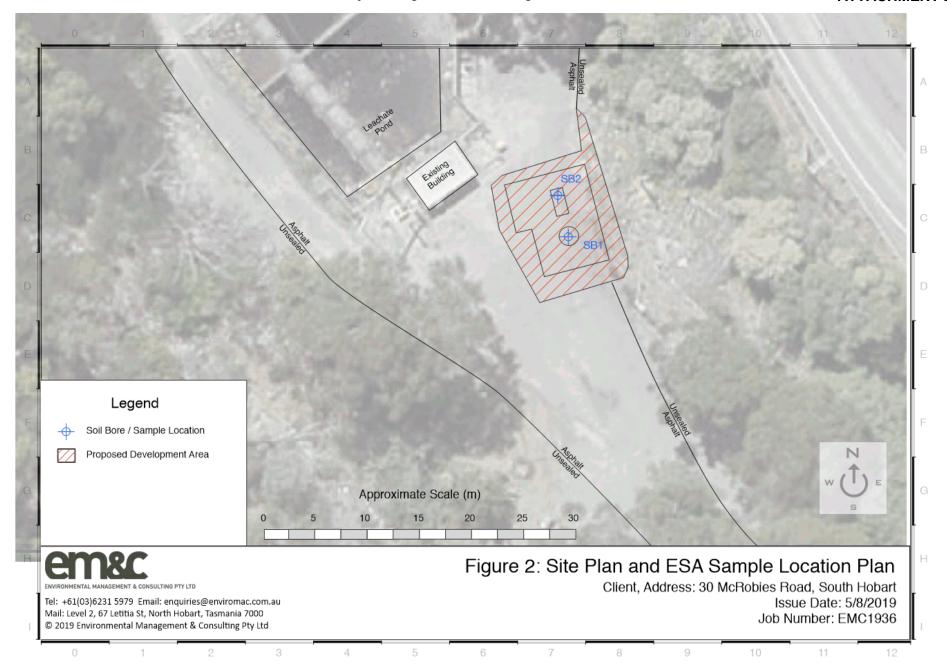
Assessment and Remediation of the Environment, Adelaide, Australia.

NEPC, 2013, The National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013, National Environmental Protection Council, Adelaide, Australia.

NHMRC (2011), Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy.

National Health and Medical Research Council, National Resource Management Ministerial Council,


Commonwealth of Australia, Canberra.


Tasmanian Environmental Protection Authority, 2018, Information Bulletin 105 (IB105), Classification and Management of Contaminated Soil for Disposal, Version 3 (2018).

Tasmanian Environmental Protection Authority, 2019: Potentially Contaminating Activities, Industries and Land Uses viewable at: https://epa.tas.gov.au/regulation/contaminated-sites/identification-and-assessment-of-contaminated-land/potentially-contaminating-activities-industries-and-land-uses Accessed by EM&C in August 2019.

The LIST, 2018, www.thelist.tas.gov.au, Land Information System Tasmania, accessed by EM&C in July/August 2019

FIGURES

TABLES

Table 1a

In-Situ Soil Validation Analytical Results v Land Use Criteria

Total Recoverable Hydrocarbons, Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalene and Polycyclic Aromatic Hydrocarbons

Sample ID_Depth (m)		PID	Soil	Land Use	Confining Geology (USDA Soil Texture Group)	Total Recoverable Hydrocarbons (mg/kg)							Toluene	Ethyl-		Naph-	Polycyclic	Aromatic Hyd (mg/kg)	rocarbons	Carcino-
	Sample Date	Results (ppm)	Moisture Content			C6 - C10	F1 C6 - C10 less BTEX	>c10 - c16	F2 >C10 - C16 less Naphthalene	F3 >C16 - C34	F4 >C34 - C40	Benzene (mg/kg)	(mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	thalene ⁴ (mg/kg)	Naph- thalene ⁴	Benzo(a)- pyrene	Total PAHs	as BaP TEQ ⁵ (mg/kg)
In-Situ Soil Assessment 5 July 2019																				
SB1/0.075-0.125	05-Jul-19	0.0	4.7	Com. / Ind.	SAND: 0- < 1m	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<1	< 0.5	0.13	< 0.5	0.6
SB1/1.0-1.1	05-Jul-19	0.0	23.3	Com. / Ind.	SAND: 1- < 2 m	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<1				-
SB1/1.5-1.6	05-Jul-19	0.0	22.0	Com. / Ind.	SAND: 1- < 2 m	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<1	-		-	-
SB2/0.5-06	05-Jul-19	0.0	18.4	Com. / Ind.	SAND: 0- < 1m	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<1				-
Limit of Reporting Soil	imit of Reporting Soil						10	50	50	100	100	0.2	0.5	0.5	0.5	1.0	0.5	0.5	0.5	0.6
NOMINATED GENERIC INVEST	IGATION CRITERI	Α																		
(1) NEPM HIL 'D' - Commercial	/ Industrial																		4000	40
(1) NEPM Soil HSL 'D' for Vapo	ur Intrusion - Cor	mmercial/ Ir	ndustrial		SAND: 0- < 1m		260		NL			3	NL	NL	230	NL				-
(1) NEPM Soil HSL 'D' for Vapo	ur Intrusion - Cor	mmercial/ Ir	ndustrial		SAND: 1- < 2 m		370		NL			3	NL	NL	NL	NL				-
[2] CRC CARE Soil HSL 'D' for Dir	ect Contact - Cor	nmercial/ In	ndustrial		-		26000		20000	27000	38000	430	99000	27000	81000	11000				-
(2) CRC CARE Soil HSL 'IMW' for	Vapour Intrusion	- Intrusive	Maintenance	Worker	SAND: 0- < 2 m		NL		NL	NL	NL	77	NL	NL	NL	NL				-
(2) CRC CARE Soil HSL 'IMW' for	Direct contact -	Intrusive Ma	aintenance V	/orker			82000			85000	120000	1100	120000	85000	130000	29000				-
(1)NEPM EIL Commercial and Ir	ndustrial															370	370			-
(1,3)NEPM ESL for Commercial	and Industrial				COARSE SOIL		215		170	1700	3300	75	135	165	180			1.4		
⁽¹⁾ NEPM Soil Management Lin	nits - Commercial	and industr	ial		COARSE SOIL	700		1000		3500	10000									
(1) Soil Saturation concentration	Soil Saturation concentration SAND						950	-	560			360	560	64	300	9	9			-

Tables Notes:

1) Assessment criteria are obtained from National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (NEPC, 1999)

2) Assessment criteria are obtained from CRC CARE Technical Report no. 10: Health screening levels for petroleum hydrocarbons in soil and groundwater (Friebel & Nadebaum 2011)

3) ESL criteria have been established for protection of plant root zones and are applicable in non-arid areas for assessment of soil witin the 0-2mBGS depth range.

4) Laboratory analysis of naphtalene is conducted using two separate methods, EP080: extracting sample for volatiles and EP075[SIM]B: extracting sample for semi-volatiles. The naphthalene concentration from EP080 is used for F2 calculation.

5) HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to 8(a)P adopted by CCME 2008 (refer Schedule 87). The 8(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its 8(a)P TEF and summing these products. TEQs have been calculated using half of the LOR result, where «LOR was reported.

"-" denotes analyte not tested by laboratory, or no criteria available.

Bold values are concentrations reported above laboratory limit of reporting

Highlighted values exceed nominated investigation criteria.

Table Abbreviations

NEPM: National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013

CRC CARE: Cooperative Research Centre for Contamnination Assessment and Remediation of the Environment

HIL: Health Investigation Level

IMW: Intrusive Maintenance Worker

ESL: Environmental Screening Level

PID: Photo-Ionisation Detection

HSL: Health Screening Level

EIL: Environmental Investigation Level

Table 1b

In-Situ Soil Validation Analytical Results v Land Use Criteria

Metals and Soil Properties

	micros situ con repetitio																						
Sample ID_Depth (m)	Sample Date	Soil Moisture Content	Land Use	Confining Geology (USDA Soil Texture Group) ⁷	Arsenic (mg/kg)	Beryllium (mg/kg)	Boron (mg/kg)	Cadmium (mg/kg)	Chromium (VI) (mg/kg)	Chromium (Total) (mg/kg)	Cobalt (mg/kg)	Copper (mg/kg)	Iron (%)	Lead (mg/kg)	Mangan- ese (mg/kg)	Mercury (inorganic) (mg/kg)	Nickel (mg/kg)	Selenium (mg/kg)	Zinc (mg/kg)	Cation Exchange Capacity (meg/100g)	Organic Carbon (mg/kg)	рН	Clay Content
In-Situ Soil Assessment 5 July 2019																							
SB1/0.075-0.125	05-Jul-19	4.7	Com. / Ind.	SAND: 0- < 1m	<5	<1	-	<1	<0.5	5	9	72		<5	213	<0.1	11	<5	29				-
SB1/1.0-1.1	05-Jul-19	23.3	Com. / Ind.	SAND: 1- < 2 m	<5	1	<50	<1		19	11	15	2.24	8	145	<0.1	13	<5	37	20	<0.5	5.60	23%
SB1/1.5-1.6	05-Jul-19	22.0	Com. / Ind.	SAND: 1- < 2 m	<5	<1	<50	<1		12	16	14	-	7	116	< 0.1	13	<5	29				-
SB2/0.5-06	05-Jul-19	18.4	Com. / Ind.	SAND: 0- < 1m	<5	<1	<50	<1		6	<2	6	-	6	46	<0.1	<2	<5	11		-	-	-
Limit of Reporting Soil					10	1	50	10	0.5	2	2	5	0.005	100	5	0.1	2	5	5	0.1	0.5	1.0	0.5
NOMINATED INVESTIGATIO	N CRITERIA														•								
(1) NEPM HIL 'D' - Commerc	ial/ Industria	ı			3 000	500	300 000	900	3 600		4 000	240 000	-	1 500	60 000	730	6 000	10 000	400 000	-	-	-	-
(2)CRC CARE Soil HSL 'D' for I	Direct Contac	ct - Commer	cial/ Industrie	sl l																			
(2)CRC CARE Soil HSL 'IMW'	for Direct cor	ntact - Intrus	sive Maintena	ince Worker																			
(1)NEPM EIL Commercial and	(1)NEPM EIL Commercial and Industrial							-		670**		110*	-	1 800			460*		500*		-	-	-

IMW: Intrusive Maintenance Worker

Tables Notes:

Bold values are concentrations reported above laboratory limit of reporting

Highlighted values exceed nominated investigation criteria.

Table Abbreviations

NEPM: National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 CRC CARE: Cooperative Research Centre for Contamnination Assessment and Remediation of the Environment

HIL: Health Investigation Level

ESL: Environmental Screening Level

EIL: Environmental Investigation Level

¹⁾ Assessment criteria are obtained from National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (NEPC, 1999)

²⁾ Assessment criteria are obtained from CRC CARE Technical Report no. 10: Health screening levels for petroleum hydrocarbons in soil and groundwater (Friebel & Nadebaum 2011)

³⁾ EIL criteria have been established for protection of plant root zones and are applicable in non-arid areas for assessment of soil witin the 0-2mBGS depth range.

[&]quot;-" denotes analyte not tested by laboratory, or no criteria available.

^{*}ElLs has been based on reported soil pH and cation exchange capacity reported in sample SB1/1.0-1.1

^{**}The EIL for chromium (III) has been adopted as a criteria for chromium (total) and is based on reported clay content in SB1/1.0-1.1

Table 2a

In-Situ Soil Validation Analytical Results v Waste Disposal Criteria

Total Petroleum Hydrocarbons, Benzene, Toluene, Ethylbenzene, Xylenes, Naphthalene, Polycyclic Aromatic Hydrocarbons, Cyanide, Fluoride and PCBs

				n Hydrocarbons 1/kg)		Toluene	Ethylbenzene	M. d	Naphthalene ²	Polycyclic A	romatic Hydrocarb	ons (mg/kg)	Cyanide (Total)	Fluroide	Polychlorinated
Sample ID_Depth (m)	Sample Date	C6 - C9	C10 - C36	Benzene (mg/kg)	(mg/kg)	(mg/kg)	Xylenes (mg/kg)	(ma/ka)	Naphthalene ²	Benzo(a)pyrene	Total PAHs	(mg/kg)	(mg/kg)	biphenyls (mg/kg)	
						In-Situ Soil Asse	ssment 5 July 20	19							
SB1/0.075-0.125	05-Jul-19	<10	<50	<0.2	<0.5	<0.5	<0.5	<1	<0.5	0.13	<0.5	<1	110	<0.1	
SB1/1.0-1.1	05-Jul-19	<10	<50	<0.2	<0.5	<0.5	<0.5	<1	<0.5	-	-	-		-	
581/1.5-1.6	05-Jul-19	<10	<50	<0.2	<0.5	<0.5	<0.5	<1	<0.5	-	-	-	-	-	
SB2/0.5-06	05-Jul-19	<10	<50	<0.2	<0.5	<0.5	<0.5	<1	<0.5	-	-	-		-	
Limit of Reporting Soil		10	50	0.2	0.5	0.5	0.5	1.0	0.5	0.1	0.5	1.0	40	0.1	
Tasmanian EPA Information Bulletin 105	Classification and	Management of Co	ntaminated Soil for (Disposal, 2018											
Fill Material - Level 1		65	1,000	1	1	3	14	-	-	0.08	20	32	300	2	
Low Level Contaminated Soil - Level 2		650	5,000	5	100	100	180		-	2	40	1,000	3,000	20	
Contaminated Soil - Level 3		1,000	10,000	50	1,000	1,080	1,800	-	-	20	200	2,500	10,000	50	

Tables Notes

1) Assessment criteria are obtained Tasmanian EPA Information Bulletin 105 Classification and Management of Contaminated Soil for Disposal, 2018

2] Laboratory analysis of naphtalene is conducted using two separate methods, EP080: extracting sample for volatiles and EP075(SIM)B: extracting sample for semi-volatiles. The naphthalene concentration from EP080 is used for F2 calculation.

"-" denotes analyte not tested by laboratory, or no criteria available.

Bold values are concentrations reported above laboratory limit of reporting

Highlighted values exceed nominated classification criteria.

Table Abbreviations

1 of 1

Table 2b In-Situ Soil Validation Analytical Results v Waste Disposal Criteria Metals

										,	иetals (mg/kį	g)								
Sample ID_Depth (m)	Sample Date	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium (VI)	Chromium (Total)	Cobalt	Copper	Lead	Manganese	Mercury (inorganic)	Molyb- denum	Nickel	Selenium	Silver	Tin	Vanadium	Zinc
							In-	Situ Soil A	ssessment	5 July 2019	,									
SB1/0.075-0.125	05-Jul-19	<5	40	<1		<1	<0.5	5.0	9.0	72.0	<5	213	<0.1	<2	11	<5	<2	<5		29
SB1/1.0-1.1	05-Jul-19	<5	90	1.0	<50	<1	-	19.0	11.0	15.0	8.0	145	<0.1		13	<5			62	37
581/1.5-1.6	05-Jul-19	<5	100	<1	<50	<1	-	12.0	16.0	14.0	7.0	116	<0.1	-	13	<5	-		53	29
SB2/0.5-06	05-Jul-19	<5	40	<1	<50	<1		6.0	<2	6.0	6.0	46	<0.1		<2	<5			23	11
Limit of Reporting Soil		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
					Tasmania	n EPA Inform	ation Bulletin	105 Classificat	tion and Mana	gement of Co	ntaminated So	oil for Disposal	, 2018							
Fill Material - Level 1		20	300	2		3	1	50	100	100	300	500	1	10	60	10	10	50		200
Low Level Contaminated Soil - Level 2		200	3,000	40		40	200	500	200	2,000	1,200	5,000	30	1,000	600	50	180	500		14,000
Contaminated Soil - Level 3		750	30,000	400		400	2,000	5,000	1,000	7,500	3,000	25,000	110	4,000	3,000	200	720	900	-	50,000

Tables Note

1) Assessment criteria are obtained Tasmanian EPA Information Bulletin 105 Classification and Management of Contaminated Soil for Disposal, 2018

Bold values are concentrations reported above laboratory limit of reporting

Highlighted values exceed nominated classification criteria.

Table Abbreviations

Table 2b

[&]quot;-" denotes analyte not tested by laboratory, or no criteria available.

Table 3 Soil Assessment QA/QC Results

Total Recoverable Hydrocarbons, Benzene, Toluene, Ethylbenzene and Xylenes

					Total Recoverable H	ydrocarbons (mg/kg)						
Sample ID /Depth (m)	١ ,	ample Date		F1	F2	F3	F4	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Naphthalene ¹ (mg/kg)
Sample to / Deptit (m)	1 1	umpic butc		C6 - C10	>C10 - C16 less	>C16 - C34	>C34 - C40	Denzene (mg/ng/	rotacine (mg/ng/	emplocited (mg/kg)	Aylenes (mg/ng)	reapirulaiene (///g/xg)
				less BTEX	Naphthalene							
				Ness DIEN	, rapininarene							
					Duplica	ite Samples (all soil result	s in mg/kg)					
					In-Situ	Excavation Validation Soil	Assessment					
581/0.075-0.125		05-Jul-19		<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	d
QCP_5/7/19	Primary laboratory	Duplicate of	SB1/0.075-0.125	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	4
Relative % Difference	581/0.075-0.125	and	QCP_5/7/19	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
RPD crits	eris			NO LIMIT	NO LIMIT	NO LIMIT	NO LIMIT	NO LIMIT	NO LIMIT	NO LIMIT	NO LIMIT	NO LIMIT
Pass/Fi	ni			Pass	Pess	Pass	Pess	Pass	Pess	Pess	Pess	Pass
					Limit of	Reporting (LOR) - Soil Sam	ples (mg/kg)					
Limit of Reporting	ALS (Primary)			10	50	100	100	0.2	0.5	0.5	0.5	1.0
					5-114	ssessment Trip Blank Sampl	(//)	•				
TB_5/7/19	05-Jul-19	Tr	ip Blank	<10	-30	<100	<100	<0.2	<0.5	<0.5	<0.5	d
					Soil Assessm	ent Equipment Rinsate Blar	nk Samples (µg/l)					
RB_5/7/19	05-Jul-19	Rins	ate Blank	<20	<100	<100	<100	d	<2	-2	<2	- 4
		-										

Tables Notes:

1) Laboratory analysis of naphtalene is conducted using two separate methods, EP080: extracting sample for volatiles and EP075[SIM]B: extracting sample for semi-volatiles. The naphthalene concentration from EP080 is used for F2 calculation.

"-" denotes analyte not tested by laboratory, or no criteria available.

Bold values are concentrations reported above laboratory limit of reporting

Highlighted values exceed nominated investigation criteria.

QC- Acceptance Criteria

RPD Duplicates: RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable, and have been adopted for this assessment:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Table Abbreviations

NEPM: National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013

CRC CARE: Cooperative Research Centre for Contamnination Assessment and Remediation of the Environment

APPENDIX A

Design Documentation Provided by JMG

For City of Hobart

Construction of a

Truck Wash at

McRobie's Landfill

April 2019

Johnstone McGee and Gandy Pty Ltd

incorporating Dale P Luck & Associates (trading as JMG Engineers and Planners) ABN 76 473 834 852 ACN 009 547 139

www.jmg.net.au

HOBART OFFICE 117 Harrington Street Hobart TAS 7000 Phone (03) 6231 2555 Fax (03) 6231 1535 infohbt@jmg.net.au

LAUNCESTON OFFICE 49-51 Elizabeth Street Launceston TAS 7250 Phone (03) 6334 5548 Fax (03) 6331 2954 infoltn@jmg.net.au

Project No. 、	J179001EL	ton						
Issue Date	Description	Orig	inator	Che	ecked	Approved		
29-03-2019	Contamination Management Plan Internal Review	CP	8	CP	8	JMB	JMB	
01-04-2019	Contamination Management	CP	8	CP	8	JMB	JMB	
	Project No. Conent Issue State Issue Date 29-03-2019	Project No. J179001EL ment Issue Status Issue Date Description 29-03-2019 Contamination Management Plan Internal Review 01-04-2019 Contamination Management	Project No. J179001EL	Project No. J179001EL nent Issue Status Issue Date Description Originator 29-03-2019 Contamination Management CP Plan Internal Review 01-04-2019 Contamination Management CP	Project No. J179001EL	Project No. J179001EL nent Issue Status Issue Date Description Originator Checked 29-03-2019 Contamination Management CP CP Plan Internal Review 01-04-2019 Contamination Management CP CP	Project No. J179001EL	

CONDITIONS OF USE OF THIS DOCUMENT

- DITIONS OF USE OF THIS DOCUMENT

 Copyright © All rights reserved. This document and its intellectual content remains the intellectual property of JOHNSTONE McGEE & GANDY PTY LTD (JMG). ABN 76 473 834 852 ACN 009 547 139

 The recipient client is licensed to use this document for its commissioned purpose subject to authorisation per 3. below. Unlicensed use is prohibited. Unlicensed parties may not copy, reproduce or retransmit this document or any part of this document without JMG's prior written permission. Amendment of this document is prohibited by any party other than JMG.

 This document must be signed "Approved" by JMG to authorise it for use. JMG accept no liability whatsoever for unauthorised or unlicensed use. Electronic files must be scanned and verified virus free by the receiver. JMG accept no responsibility for loss or damage caused by the use of files containing viruses.

- containing viruses.

 This document must only be reproduced and/or distributed in full colour. JMG accepts no liability arising from failure to comply with this

LIMITATIONS & DISCLAIMERS

- This report is based on a 'walkthrough' visual inspection of the various components of the building. The report does not check original designs or previous contracts. Our inspections do not cover system performance testing, nor destructive testing or intrusive inspections requiring breaking out, opening up or uncovering. out, opening up or uncovering.

 Compliance with BCA is not part of the scope of this report. The report may include references to BCA as a guide to likely compliance/non-compliance of a particular aspect but should not be taken as definitive nor comprehensive in respect of BCA compliance. This report presents information and opinions which are to the best of our knowledge accurate. JMG accepts no responsibility to any purchaser, prospective purchaser, or mortgagee of the property who relies in any way on this report.

 JMG have no pecuniary interests in the property or sale of the property.

 This report presents information provided by others. JMG do not claim to have checked, and accept no responsibility for, the accuracy of such information.

TABLE OF CONTENTS

1.	Executive Summary
2.	The Development Proposal
3.	Site Identification
4.	Legislative Requirements
4.1	Hobart Interim Planning Scheme 2015
4.2	Sampling and Assessment of Soil and Groundwater
5.	Geological and Hydrological Features
6.	Risk Assessment 10
6.1	Receptors10
6.2	Exposure Routes
7.	Health Risk Controls
7.1	Site Access
7.2	Protection of Workers1
7.3	Excavation and Soil Management Procedure
7.4	Onsite Containment of Soil
7.5	Sampling Strategy
7.6 7.6.1	Soil Disposal / Reuse
7.7	Groundwater and Surface Water Disposal
7.7.1	Groundwater Sampling and Analysis
8.	Workflow
9.	Protection of Waterways and Services
10.	Legal Reporting Obligations 15
11.	Conclusion & Recommendations 15
Figure	e 1: Site Identification
Figure	e 2: Location of the proposed Truck Wash
Figure	e 3: Truck Wash Location (approximately) (Image Google & ListMap)
Figure	e 4: Planning Scheme Zoning
Figure	e 5: Extract from Hobart Interim Planning Scheme 2015
Figure	e 6: Soil Type
Figure	e 7: Extract from MRT 2002 ¹ (p.7)
	8: Nearest residential property downslope of the site
. iguit	. S. Real est residential property dominiope of the site
Table	1: Summary of Relevant Activities
Table	2: Groundwater Depth (Standing Water Level) MRT 2002 ¹
	3: Onsite Controls and Screening During Excavation Works
	The state of the s

Appendix A - Site Plan including Drawings CO2, CO3, SO3 and HO2

1. Executive Summary

There is the potential for soil and groundwater in the location of the proposed truck wash to be contaminated. Therefore, management controls and assessment of the site is required to ensure the construction workers, the public, visitors and the environment are protected. Recent groundwater or soil results were not available to assist with developing this Plan. A Geological Survey of the landfill completed in 2000-2002 has been used to estimate the likely groundwater/perched water and soil conditions at the site. The site is located on the outer edge of the operational (filled) areas and it is unlikely that the subject site (truck wash site) has been filled with landfill waste. It is proposed that a site assessment is completed in two parts with the first soil and groundwater collection to occur prior to the commencement of construction works. The second part of the environmental assessment will be completed during excavation of the pits and trenches and supervision of the soil and groundwater storage shall be completed by a suitably qualified environmental consultant. The environmental consultant will implement controls additional to this Plan to ensure that workers are not exposed to unacceptable risks and soil and groundwater is contained onsite and adequately sampled and assessed. At the conclusion of the assessment a report of the findings will be submitted to City of Hobart.

2. The Development Proposal

It is proposed to construct a truck wash downslope of the landfill leachate pond. It is proposed to relocate the pressure washer to the new truck wash and clean out the existing trench drains and constructed new shallow catch drain up to 150 mm depth above the truck wash. New water, stormwater and sewer services will be connected to the new truck wash. Service trenches will be excavated up to 1 metre below ground surface (mbgs) to allow for the installation of water, sewer and stormwater drains. Detailed plumbing plans will be made available to the environmental consultant prior to commencement.

As the development will be undertaken on potentially contaminated land any onsite works will need to be undertaken in a controlled manner as the presence of contaminated soils and/or water are likely. It is therefore necessary to protect the safety of onsite workers and offsite land users and the natural environment. This Plan will outline the potential risks and controls required to prevent risks to workers, the public and the environment.

Table 1: Summary of Relevant Activities

Proposed Construction	Construction of a Truck Wash on 0.15 m concrete slab. Excavation of 0.45 - 0.60 m concrete piles and 1.6 m deep silt trap, 2.4 m base for underground water holding tank.
Maximum Depth of Excavation	2.4 metres (3,000 Litre underground tank);
From Existing Surface Level	1.6 metres silt trap (estimate);
	Footings 0.6 metres (estimate).
	*To be confirmed with engineering plans
Description of Excavation	Soil to be excavated and stockpiled in accordance with this plan. Areas to be excavated include leveling for slab construction, stormwater drainage, underground concrete holding well, silt trap, concrete footing pads
Estimate of Materials	Total Soil = 43 cubic metres
to be excavated/extracted	Total Water = Nil
	Depth of perched and/or permanent aquifer is not known.

3. Site Identification

The site is located at the lower end of the McRobies Landfill (refer Figure 2). The truck wash will be located on two titles Certificate of Title 166085/5 and 166085/3 and located below the leachate pond (refer Figure 3).

The site is located in the 'Utilities' zone of the Hobart Planning Scheme (refer Figure 4).

Figure 1: Site Identification

Certificate of Title	166085/5 and 166085/3
Address	30 McRobies Road
Surrounding Uses	The titles are immediately adjacent to land owned by City of Hobart ('HCC Disposal Area). The nearest residential property is to the east at 35 McRobies (65 metres from the truck wash boundary to the property boundary) and to the south at 26 McRobies Road (76 metres from the site boundary).
Land Zoning	The two titles are located within the 'Utilities' zone and to the south is the 'Inner Residential' zone and to the east is the 'Environmental Living' zone. Refer Figure 4.

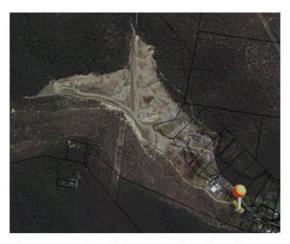


Figure 2: Location of the proposed Truck Wash

Figure 3: Truck Wash Location (approximately) (Image Google & ListMap)

Figure 4: Planning Scheme Zoning

4. Legislative Requirements

4.1 Hobart Interim Planning Scheme 2015

The site is considered a 'potentially contaminated site' under the Hobart Interim Planning Scheme 2015 as the site is currently in use as a 'Landfill site including onsite waste disposal and refuse pit' which is an activity listed in Table E2.2 of the E2.0 Potentially Contaminated Land Code. Evidence that the excavation will not adversely impact on health and environment by either completing an environmental site assessment or developing a plan to manage the risk to human health and the plan must also include an environmental site assessment to address E2.6.2 Performance Criteria P1(b) (refer Figure 5).

E2.6.2 Excavation

Objective:					
To ensure that works involving excavation of potentially contaminated land does not adversely impact on human health or the environment.					
Acceptable Solutions	Performance Criteria				
A1	P1				
No acceptable solution.	Excavation does not adversely impact on health and the environment, having regard to:				
	(a) an environmental site assessment that demonstrates there is no evidence the land is contaminated; or				
	(b) a plan to manage contamination and associated risk to human health and the environment that includes: (i) an environmental site assessment; (ii) any specific remediation and protection measures required to be implemented before excavation commences; and (iii) a statement that the excavation does not				
	adversely impact on human health or the				
	environment.				

Figure 5: Extract from Hobart Interim Planning Scheme 2015

This plan addresses the requirements of the planning scheme in the following ways;

- This Plan requires that a suitably qualified environmental consultant be engaged by
 the contractor to develop a Sampling and Assessment Plan to assess the risk to
 human health and the environment as a result of the construction works. Note this
 does not include a full detailed site assessment to assess the site in accordance
 with the National Environment Protection (Assessment of Site Contamination)
 Measure 1999 (NEP(ASC)M).
- This Plan requires the contractor to engage a suitably qualified environmental
 consultant to undertake the onsite assessment prior to the commencement of
 works, to supervise the excavation, stockpiling and management of potentially
 contaminated soil and groundwater and to complete a report which provides the
 findings of the assessment and any additional remediation or protection measures,
 not already included in this report, which are required to be implemented prior to
 excavation works commencing for the proposed construction works.
- The Plan requires that the environmental consultant prepare a report of the methodology and findings of the onsite assessment and submit the report to City of Hobart within 4 weeks of construction completion.
- This Plan provides some general safety requirements however the SAP will provide more specific details in terms of stockpiling of soils and management of groundwater on the site during excavation works.

4.2 Sampling and Assessment of Soil and Groundwater

The sampling and assessment of contaminated soils should be undertaken in accordance with the *National Environment Protection (Assessment of Site Contamination) Measure* 1999 (as amended) (NEP(ASC)M) and relevant Australian and International Standards. The sampling strategy will however be based on judgmental sampling and will not include random based sampling due to the need to align sampling points with the excavation locations of the concrete piles, pit, underground tank and drainage lines which are the potential exposure points for onsite workers.

The selection of soil and water analytes will be determined using the NEP(ASC)M and the NSW EPA (2012) Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases. Assessment and review of the results will be completed against the NEP(ASC)M and in the absence of guidance in the NEP(ASC)M other relevant and justified national or international guidelines relevant to the construction exposure scenario.

The scope of the CMP is to protect the workers and the public from risks arising from the excavation works and does not include the ongoing use of the site for its future intended use. Therefore, it is <u>not the intention</u> of this Plan that a Preliminary or Detailed Site Assessment of the site be undertaken in accordance with the NEP(ASC)M for future site use.

5. Geological and Hydrological Features

Soil and hydrological characteristics of the site will be confirmed by the onsite assessment. Soil mapping on List Map (DPIPWE Tas) has defined the dominant soil type as

"Podzol and podzolic soils on sandstone

Undefined soil developed on Triassic sandstone and colluvium" (refer Figure 6)

Figure 6: Soil Type

2002 Geological Survey by MRT, 2002¹ provide background detail of the likely groundwater depth and soil type in the area above and below the proposed truck wash site. The survey

¹ Mineral Resources Tasmania, 2002, The Effects of Waste Disposal on Groundwater Quality in Tasmania, McRobies Gully Waste Depot South Hobart, Geological Survey 2002/16.

shows two groundwater bores (MG2000/3 and MG2000/4) on the outer edge of the landfilled area which is located just above the leachate pond and also a groundwater bore (MG1996/3) located downslope of the leachate pond (refer Figure 7). The leachate pond is located on the outer edge of the landfill footprint. A review of the borehole logs for the two groundwater wells located upslope of the leachate pond reveals the following;

- Possible perched water between 1.0 m and 1.5m
- Depth of landfilling in this lower area appears shallow and up to 1.2 mbgs although this requires confirmation.
- Permian sediments from 1.5 mbgs sandstone and interbedded siltstone, mudstone and sandstone are dominant up to 12 mbgs.
- Sandstone (bedrock was encountered from 1.5 mbgs)
- Bores MG2000/3 and MG2000/4 may be located on the Cascades Fault Zone

Borehole log was not available for the groundwater bore located downslope of the leachate pond. However, groundwater depth (standing water level) was reported for this location (Refer Table 2).

Table 2: Groundwater Depth (Standing Water Level) MRT 20021

Groundwater Bore	Standing Water Level
Ref from MRT 2002 Report ¹	metres below the ground surface
MG1996/3	5.5
MG2000/3	2.0
MG2000/4	1.5 - 2.0

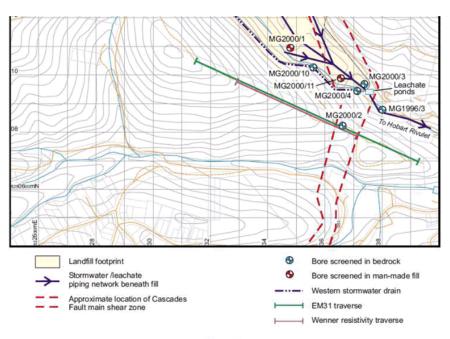


Figure 4

Locations of monitoring bores installed at the McRobies Gully waste depot with respect to the landfill footprint and key infrastructure.

Figure 7: Extract from MRT 20021 (p.7)

6. Risk Assessment

The preliminary conceptual site model indicates that there is potential for direct contact with contaminated soils and groundwater during the excavation works and management of soil and groundwater. The leachate pond collects most of the leachate from the McRobies landfill and there is potential for soils and groundwater in this area to be contaminated from leachate water. In addition, there is potential for inhalation of hazardous gases such as methane, ammonia and petroleum hydrocarbons. The preliminary conceptual site model reveals the following risk factors;

- The potential to encounter perched groundwater/leachate seepage/landfill water at shallow depths from 0.5 to 2.0 mbgs during excavation works.
- The potential to encounter contaminated surface water
- The potential to encounter the permanent aquifer/contaminated groundwater from 2.0 mbgs
- Residential properties are located downslope of the subject site. Potential
 migration or discharge of contaminated soil and groundwater needs to be
 controlled and prevented (refer Figure 8)
- The potential to encounter contaminated soil and landfill water during excavation
- The potential to encounter highly contaminated surface and perched groundwater.
 The water in this southern area was reported to contain the highest concentrations of contaminants¹ and high concentrations of ammonia were reported in this area in 2002. However, the quality of surface, perched and permanent groundwater is likely to have changed since the report was completed in 2002. Current data is not available to further inform the risk assessment.

Figure 8: Nearest residential property downslope of the site

6.1 Receptors

The works have the potential to expose the following human receptors;

Construction workers

- Site supervisors
- Site visitors (including the general public)
- Residents downslope of the site if there is uncontrolled release of soil or groundwater

The works have the potential to impact the following ecological receptors;

- Disturbance of groundwater under the site
- · Disturbance of soil and release of contaminants into groundwater
- Soil and aquatic flora and fauna on the site due to the movement or uncontrolled release of contaminants

6.2 Exposure Routes

The works have the potential to exposure the human receptors to contaminants by the following exposure routes;

Direct Contact

- · Direct contact with contaminated soil
- · Direct contact with contaminated surface, perched and permanent groundwater

<u>Inhalation</u>

 Inhalation of volatile compounds including methane, ammonia and petroleum hydrocarbons released from contaminated soil or groundwater

Ingestion

· Ingestion of contaminated soil and groundwater

These risks will be controlled through work practices and procedures recommended in this Plan and by the environmental consultant.

7. Health Risk Controls

7.1 Site Access

As a private property, only the occupants and those persons engaged to complete work on the site will be permitted to enter the work site. Unaccompanied and unauthorised visitors will not be permitted to enter the work site area.

7.2 Protection of Workers

This plan does not replace Workplace Standards Tasmania Codes applicable to excavation, demolition and construction works generally.

Additional protection must be provided to protect workers from exposure to vapours and exposure to contaminated soil through inhalation, ingestion and direct contact.

The following measures are recommended to ensure workers are protected from exposure to potentially contaminated soil, vapour and groundwater, although additional measures shall be implemented once the preliminary environmental site assessment and analytical results have been reviewed by the environmental consultant.

Table 3: Onsite Controls and Screening During Excavation Works

Potential Risks	References/Limits	Preventative Measures
Direct Contact with PCS	NEPM (RES A)	Personal Protective Equipment (PPE) to be worn by workers likely to come into contact with soil or equipment that is likely to come in contact with soil. PPE includes gloves, covered shoes, long pants and long sleeve shirts.
		2. Use PPE and avoid direct contact with soil
		3. Do not eat, drink or smoke in the work area
		Wash hands regularly and prior to eating and before leaving the site
Vapour Inhalation	*900mg/m3 (Aust. Govt) *100mg/m3 (TWA)	Suitably qualified environmental consultant must be onsite prior to the commencement of excavation works.
	(USA, OSHA) *USA, ATSDR	 Gas levels in the soil are most accurately monitored upon commencement of excavation and screened using a PID. Any delay in vapour screening may result in low/false readings. Stop work if PID readings exceed 300 part per million (ppm) and stand upwind. Return to the work site when PID readings are not greater than 200ppm.
Explosion		Not likely - however no smoking onsite or exposed naked flames.
		2. If operating in a confined space monitor the area with lower explosive limit (LEL) detector and stop work if LEL is greater than 2%. Recommence work when LEL drops below 2% and monitor continuously.
Ingestion of		Do not have direct contact with the soil.
PCS		Wear gloves during works where there is a likelihood of contact with soil.
		Provide hand washing facilities for workers close by.
		Avoid eating in the work area and wash hands before eating or drinking.

7.3 Excavation and Soil Management Procedure

All excavation work must comply with the following procedure;

- The contractor will work directly with the environmental consultant to plan the works prior to commencement. Planning will include implementation of a short term onsite bunded/sealed storage for potentially contaminated soil and water.
- A suitably qualified environmental consultant must be present when the excavation commences to ensure gas detection and observations for potentially contaminated

- soil/groundwater are carried out and excavated soil is managed in accordance with EPA Tasmania requirements.
- Excavated soil must be treated as potentially contaminated and temporarily stored onsite in an appropriately bunded area until laboratory results and approval for disposal has been received in accordance with EPA Tasmania: Bulletin 105.
- 4. No soil or water will be removed from the work site without clearance from the environmental consultant based on laboratory testing of the soil. Suitable disposal or reuse of the soil and water will be determined based on laboratory testing results.
- Potentially contaminated stockpiled soil will be contained to prevent runoff from the stockpile during rain events and covered during high wind and rain periods.
- All workers engaged in excavation works must wear appropriate clothing long pants and long sleeve shirt, covered safety work boots and gloves to prevent dermal contact with the soil.
- 7. If during excavation works the PID readings completed by the environmental consultant are greater than 300ppm then work must cease temporarily and all persons will be direct to either temporarily move upwind of the source or move offsite. When levels have dropped below 200ppm work can recommence. If consistent readings are found above 40ppm then regular stop work breaks should be introduced to allow source vapours to reduce to acceptable levels so that a daily TWA of 300ppm² is not exceeded. Maximum short-term exposure must not exceed 1000ppm¹ at any time.

7.4 Onsite Containment of Soil

Excavated soil will be reused onsite or stockpiled onsite ready for offsite disposal. Soil will be segregated into 'clean' and 'dirty' piles. Stockpiled soil will be bunded and covered to prevent escape of soil and contaminants including the influence of wind and rain. A suitable location for stockpile/s will be determined prior to commencement of works.

7.5 Sampling Strategy

The environmental consultant will develop the Sampling and Assessment Plan (SAP).

The SAP will be required to achieve the main objective of this CMP which is to;

- Design a SAP which will identify the potential contaminants in the soil and groundwater which may pose a risk to onsite workers, off site receptors and the environment.
- Groundwater will only be tested if groundwater is encountered in test pits to the maximum anticipated depth of excavation.
- 3. The SAP will be commenced prior to the commencement of construction on the site and the results will be used to drive decisions regarding effective controls required to prevent the exposure to workers and the public to identified contaminants.

It will <u>not</u> be the objective of the SAP to complete a full and Detailed Site Assessment (DSI) of the site under the NEP(ASC)M.

7.6 Soil Disposal / Reuse

Any soil which is later declared uncontaminated or of a sufficient quality to be disposed onsite based on testing results may be disposed of on the site or back into the landfill on advice from the environmental consultant.

² USA, Agency for Toxic Substances and Disease Registry, CAS#86290-81-5 & 8006-61-9

7.6.1 Soil Sampling and Analysis

Potentially contaminated soil will be sampled and disposed of in accordance with *EPA Tasmania*: *Bulletin 105*. Laboratory analysis of soil samples will be completed by a NATA accredited laboratory. A primary and secondary NATA accredited laboratory will be used for the analysis of soil samples.

7.7 Groundwater and Surface Water Disposal

Groundwater which is encountered during excavation works which is sufficiently prevalent to require extraction or diversion to facilitate below ground construction works will be removed and stored on the work site awaiting confirmation of laboratory results prior to onsite or offsite disposal. It is preferable not to extract or store any surface or groundwater however depending on the volume of groundwater encountered during excavation it may be necessary to extract groundwater or perched water to facilitate excavation and construction works.

Groundwater will be held in sealed sturdy containers with tight fitting lids such as 200 L pelican containers.

Groundwater samples will be collected and laboratory analysis will be in accordance with the NEP(ASC)M.

7.7.1 Groundwater Sampling and Analysis

If groundwater is encountered in the excavation test hole sampling shall be completed in accordance with NEP(ASC)M and NSW Landfill Guidelines³.

A primary and secondary NATA accredited laboratory will be used for the analysis of groundwater samples.

8. Workflow

In order to more fully assess the potential risks to workers, the public and the environment it is suggested that tasks are completed in the following order;

- The contractor will mark out the location of piers, the silt trap pit, underground tank and service trenches
- 2. The environmental consultant will undertake soil sampling and gas screening at selected locations prior to the commencement of onsite excavation works
- The environmental consultant will review the results and additional controls will be implemented as determined necessary to protect workers, the public and the environment.
- 4. The environmental consultant will attend the site immediately prior to the commencement of excavation works and will be onsite during all excavation works. Excavation works shall not commence until the environmental consultant is in attendance and ready to screen the soil.
- 5. The environmental consultant will advise the contractor as soon as possible or in the case of an imminent threat to the health or safety of onsite workers or visitors of an unacceptable risk to onsite workers or the public in relation to contaminated soil or groundwater.
- The contractor shall take action as necessary to protect workers from exposure to contaminants as is reasonably practicable.

³ NSW EPA (2012) Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases

9. Protection of Waterways and Services

Sandbags or similar materials will be placed around stormwater drains to prevent runoff from the worksite into Councils stormwater system. Contaminated soil runoff will not be allowed to enter Councils stormwater system.

10. Legal Reporting Obligations

The Contractor shall notify Council within 24 hours if any of the following occurs during the contractors work on the site;

- The escape of soil or liquid from the site or into stormwater drains
- Damage to onsite infrastructure
- · The occurrence of fire on the site or the presence of a fire hazard

The Contractor shall notify EPA Tasmania if any of the following occurs;

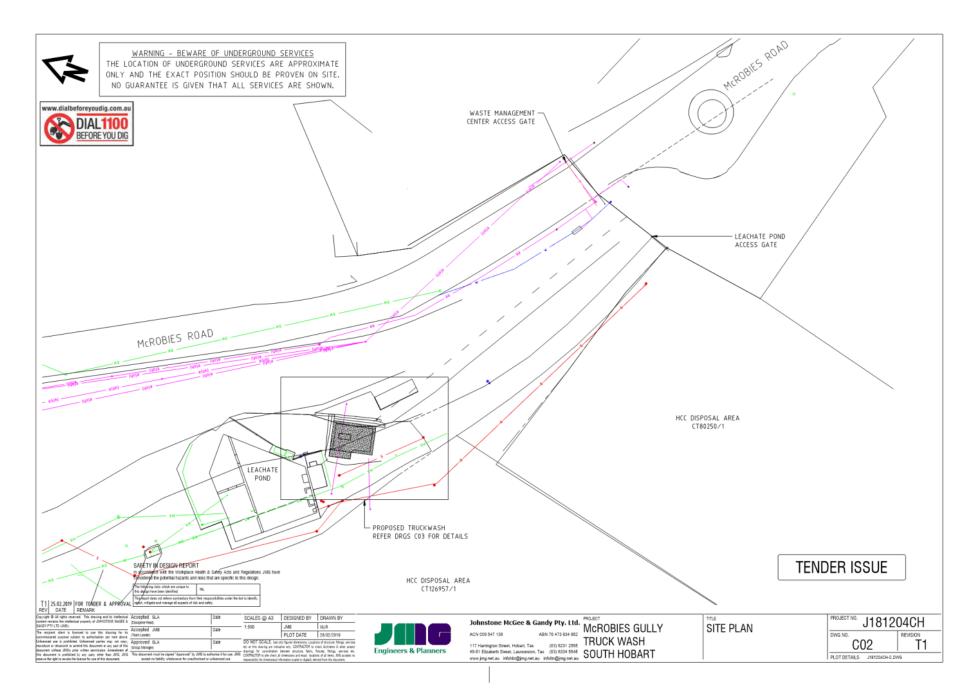
 A pollutant is released from the site in air, water or soil which is likely to cause environmental harm or environmental nuisance.

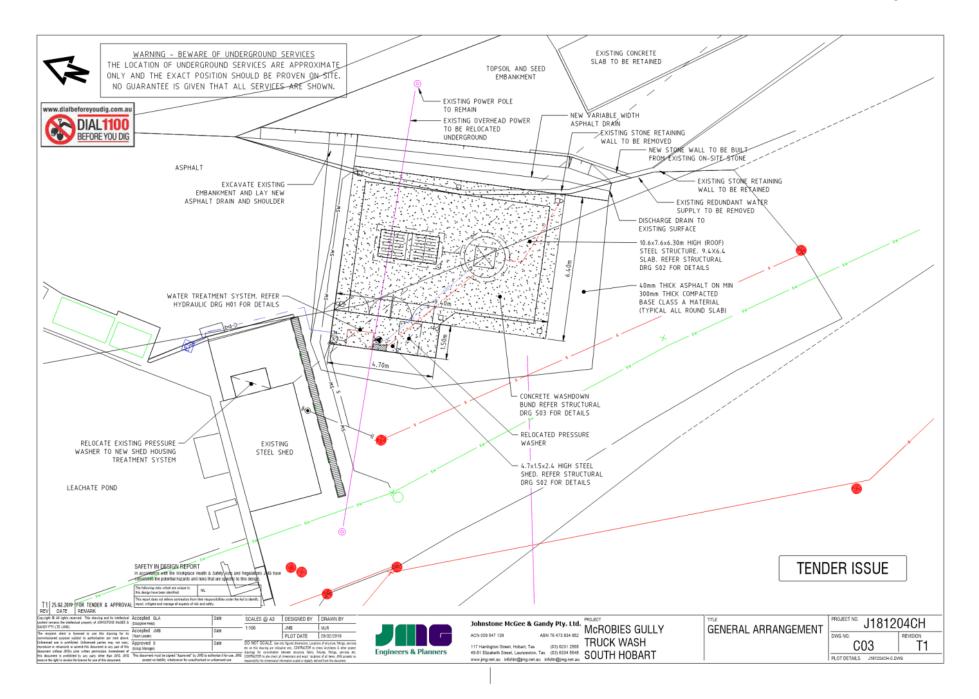
11. Conclusion & Recommendations

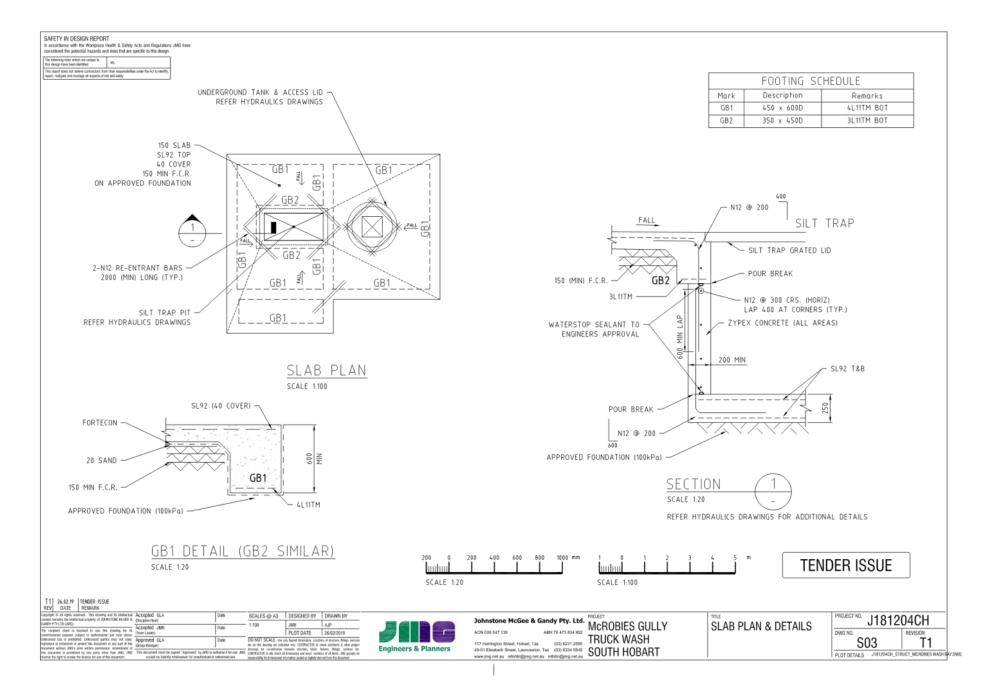
The following recommendations are made;

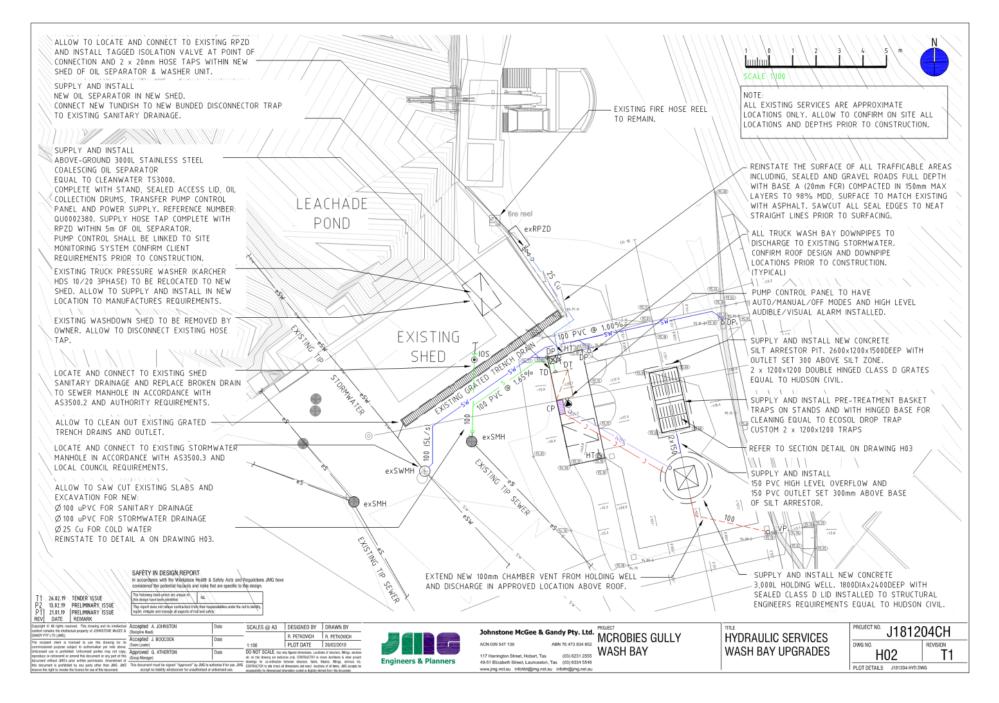
- The land owner of the site, engage a suitably qualified environmental consultant prior to the commencement of works to plan and supervise the preliminary screening of soil and gas and soil excavation and management onsite;
- The environmental consultant will be required to attend site prior to the commencement of excavation and excavation must not commence until the environmental consultant is in attendance.
- The sampling plan for soil, water and gas will be determined by the suitably qualified consultant with the objective to determine the end disposal /use of any soil and water and assess risks to onsite workers, the public and visitors to the work site.
- The environmental consultant shall provide all laboratory reports, field log sheets and an environmental assessment report to the City of Hobart within 30 days of the cessation of the onsite works.

Signed
JOHNSTONE MCGEE AND GANDY


Carmel Parker BSc. App, MEnvMgmt SENIOR ENVIRONMENTAL SCIENTIST




APPENDIX A


Site Plan including Drawings CO2, CO3, SO3 and HO2



Johnstone McGee and Gandy Pty Ltd

incorporating Dale P Luck & Associates (trading as JMG Engineers and Planners) ABN 76 473 834 852 ACN 009 547 139

www.jmg.net.au

HOBART OFFICE 117 Harrington Street Hobart TAS 7000 Phone (03) 6231 2555 Fax (03) 6231 1535 infohbt@jmg.net.au

LAUNCESTON OFFICE 49-51 Elizabeth Street Launceston TAS 7250 Phone (03) 6334 5548 Fax (03) 6331 2954 infoltn@jmg.net.au

APPENDIX B

Ecological Investigation Levels – Site Specific

Ecological Investigation Level Calculation Spreadsheet

Developed by CSIRO for the National Environment Protection Council

© 2010. Copyright vests in the Commonwealth of Australia and each Australian State and Territory. Apart from any use as permitted under the Copyright Act 1968, no part of this work may be reproduced by any process without prior permission from the NEPC Service Corporation. Requests and enquiries concerning reproduction and rights should be addressed to the Executive Officer, NEPC Service Corporation, Level 5, 81 Flinders Street, Adelaide SA 5000.

DISCLAIMER

This work has been prepared in good faith exercising due care and attention. However, no representation or warranty, express or implied, is made as to the relevance, accuracy, completeness or fitness for purpose of this work in respect to any particular user's circumstances. Users of this work should satisfy themselves concerning its application to, and where necessary seek expert advice about, their situation. The Environment Protection and Heritage Council, the National Environment Protection Council and the NEPC Service Corporation shall not be liable to any persons or entity with respect to liability, loss or damage caused or alleged to have been caused directly or indirectly by this work.

Background information on the EIL Calculation Spreadsheet

This spreadsheet is to be used to calculate the Ecological Investigation Levels (EILs) that are to be used in the National Environment Protection (Assessment of Site Contamination) Measure when assessing a contaminated site. The EILs are numerical limits that are designed to protect soil and terrestrial flora and fauna (including pets and wildlife) and soil microbial processes from experiencing substantial deleterious effects caused by contaminants. Ecological Investigation Levels are the ecological equivalents of the investigation levels that aim to protect human health (HILs) and groundwater (GILs). Measured concentrations of contaminants in the soil at a site are compared to the appropriate EILs and if they exceed the EILs then further investigation in the form of an ecological risk assessment that conforms to Schedule B5a (NEPC, 2011) should be conducted.

This spreadsheet uses the methodology set out in Heemsbergen et al. (2008) and Schedule B(5)b (NEPC, 2011) to calculate EILs for contaminated sites that have three land-uses: (1) national parks and areas of high conservation value; (2) urban residential and open public space; and (3) commercial and industrial land.

The toxicity data used and the actual calculations of the EILs for arsenic, chromium III, copper, DDT, lead, naphthalene, nickel and zinc are presented in Warne et al. (2009) and Schedule B(5)c (NEPC, 2010). However, it should be noted that the example EIL values presented in Warne et al. (2009) have been rounded off during their calculation and therefore the values presented in that report will not match exactly with those derived by the EIL calculation spreadsheet. The EIL values calculated by the spreadsheet ALWAYS take precedence over those presented in Warne et al. (2009).

The method for deriving the EILs was developed in order to overcome all of the major limitations of the previous EILs (NEPM, 1999). The exact method used to calculate each EIL varied according to

- (1) the physicochemical properties of the contaminant which modified the key exposure pathways that were considered;
- (2) whether the toxicity data could be expressed in terms of added contaminant concentrations (obtained by subtracting the background concentration from the total contaminant concentration). When such data were available a limit of how much contaminant could be added to soil before ecotoxicological effects commenced was determined termed the Added Contaminant Level (ACL). Either a measured or predicted ambient background concentration (ABC) was then added to the ACL to obtain the EIL (see below)

EIL = ACL + ABC

The advantage of this 'added risk' method is that the EILs can never be less than the ambient background concentration.

When the toxicity data could not be expressed in terms of added concentration then the EIL was expressed as a total concentration, and it does not consider the ambient background concentration at the site.

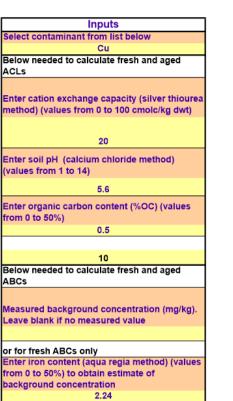
- (3) whether high quality empirical relationships were available that could predict the toxicity of contaminants using soil physicochemical properties. When these were available soil-specific EILs could be derived (where soils with different properties will have their own unique EIL). When these relationships were not available generic EILs (where a single numerical EIL applies to all Australian soils of a particular land-use) were derived.
- (4) whether an ageing leaching factor (ALF) was available. The vast majority of toxicity data is derived from laboratory-based experiments that use freshly spiked contaminants. The two characteristics that differ between such laboratory experiments and field-based experiments are ageing and leaching of contaminants. Toxicity data from laboratory-based experiments were used to derive EILs for fresh contamination (i.e. when the contaminant has been present in the soil for less than 2 years). When ALFs were available they were used to adjust laboratory-based toxicity data to field-based data that was combined with actual field data to derive EILs for aged contamination (i.e. where the contaminant has been present in the soil for 2 or more years).

References

Heemsbergen D, Warne MStJ, McLaughlin MJ, Kookana R. 2008. A Proposed Australian Methodology to Derive Ecological Investigation Levels in Contaminated Soils. CLW Science Report. Prepared for the NEPM Review Team. 76p.

NEPC (National Environment Protection Council). 1999. National Environment Protection (Assessment of Site Contamination) Measure 1999. Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater. NEPC, Adelaide, Australia.16p.

NEPC (National Environment Protection Council). 2011. National Environment Protection (Assessment of Site Contamination) Measure. Schedule B(5)a. Guideline on Risk Assessment. National Environment Protection Council, Adelaide, South Australia. 42p.


NEPC (National Environment Protection Council). 2011. National Environment Protection (Assessment of Site Contamination) Measure. Schedule B(5)b. Guidelines on the Australian methodology to derive Ecological Investigation Levels in contaminated soils. National Environment Protection Council, Adelaide, South Australia. 85p.

NEPC (National Environment Protection Council). 2011. National Environment Protection (Assessment of Site Contamination) Measure. Schedule B(5)c. Soil quality guidelines for arsenic, chromium III, copper, DDT, lead, naphthalene, nickel and zinc. National Environment Protection Council, Adelaide, South Australia. 185p.

Page 66
ATTACHMENT D

Background information on the EIL Calculation Spreadsheet

Warne MStJ, Heemsbergen DA, McLaughlin MJ, Kookana RS. 2009. Proposed soil quality guidelines for arsenic, chromium (III), copper, DDT, lead, naphthalene, nickel and zinc. CSIRO Land and Water Science Report 44/09. 195p.

Inputs

20

0.5

Leave blank if no measured value

from 0 to 50%) to obtain estimate of background concentration

or for fresh ABCs only

or for aged ABCs only

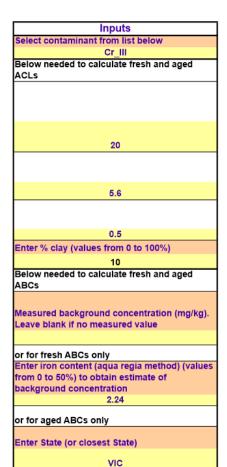
Enter State (or closest State)

Enter traffic volume (high or low)

low

Select contaminant from list below

ACLs


(values from 1 to 14)

from 0 to 50%)

ABCs

Out	puts	
Land use	Cu soil-sp	ecific EILs
	(mg contaminant/k	(g dry soil)
	Fresh	Aged
National parks and areas of high conservation value	30	35
Urban residential and open public spaces	45	80
Commercial and industrial	65	110

Out	puts						
Land use	Cr III soil-specific EILs						
	(mg contaminant/k	g dry soil)					
	Fresh	Aged					
National parks and areas of high conservation value	85	140					
Urban residential and open public spaces	190	410					
Commercial and industrial	300	670					

Enter traffic volume (high or low)

low

Inputs			
Select contaminant from list below			
Ni			
Below needed to calculate fresh and aged			
ACLs			
Enter cation exchange capacity (silver thiourea			
method) (values from 0 to 100 cmolc/kg dwt)			
20			
20			
5.6			
5.6			
0.5			
10			
Below needed to calculate fresh and aged			
ABCs			
Measured background concentration (mg/kg).			
Leave blank if no measured value			
an fan fraak ABOa anki			
or for fresh ABCs only Enter iron content (aqua regia method) (values			
from 0 to 50%) to obtain estimate of			
background concentration			
2.24			
or for aged ABCs only			
Enter State (or closest State)			
VIC			
VIC			
Enter traffic volume (high or low)			
low			
low			

Outputs			
Land use	Ni soil-specific EILs (mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	25	50	
Urban residential and open public spaces	95	270	
Commercial and industrial	180	460	

Inputs			
Select contaminant from list below			
Zn			
Below needed to calculate fresh and aged			
ACLs			
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)			
memour (values from a to 100 officiological)			
20			
Enter soil pH (calcium chloride method)			
(values from 1 to 14)			
5.6			
5.6			
0.5			
10			
Below needed to calculate fresh and aged			
ABCs			
Measured background concentration (mg/kg).			
Leave blank if no measured value			
or for fresh ABCs only			
Enter iron content (aqua regia method) (values			
from 0 to 50%) to obtain estimate of			
background concentration			
2.24			
or for aged ABCs only			
or for agea Abos only			
Enter State (or closest State)			
VIC			
Enter traffic volume (high or low)			
Enter traffic volume (high or low)			

Outputs			
Land use	Zn soil-specific EILs (mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	45	100	
Urban residential and open public spaces	130	330	
Commercial and industrial	200	500	

APPENDIX C

Laboratory Certificates of Analysis

Chain of Custody and Analysis Request 1 of 1 Site Name: McRobbies Waste Transfer Station **Environmental Management and Consulting Pty Ltd** Primary Laboratory Secondary Laboratory Project Number EMC1927 Quote Number: EN/222/18 ALS Laboratory Group Eurofins MGT 2-4 Westall Rd 6 Monterey Road Sampled By: Alex Lovibond Springvale, VIC, 3171 Dandenong South, Vic, 3175 0439 306 677 Phone: Project Manager Simon Chilsett 0428 288 258 INVOICES TO: admin@enviromac.com.au RESULTS: Results Required By: Same day 24hrs 5 days Additional fee +100% +40% +20% Please ensure all samples are analysed within the same QC lot Send Results & Copy of COC to: Simon Chilsett Alex Lovibond Laboaratory Rinsate Water VOC, BATCH: Email: simonfrenvironar.com.au Empil: alex@environac.com.au Email: Laboaratory Rinsate Water sVOC, BATCH: Phone: 0128 288 258 Phone: 0439 306 677 Phone: Laboaratory Prepared Trip Blank, BATCH: Analyses Required S-18 TPH (C6-C9), TRH (C6-C10)/BTEXN plus F1 S-3 15 Metals (NEPM Suite) (As, B. Ba, Be, Cd, Cr, Co, Cu, Mn, Ni, Pb, Se v, Zn, Hg) W4 - TPH/TRH (C6-C36 or 40)/BTEXN plus F1 & F2 Sample Type Preservation Method Laboratory Sample ID Field Sample ID Date Collected COMMENTS (Mention if samples are for QC/MS, Filtered or Not) Soil Water Glass Plastic SB1_0.075-0.125 5/7/19 2 x Jar Additional jar incase extra required for IB105 screen SB1_1.0-1.1 5/7/19 × 1 x jar 1 x Bag SB1_1.5-1.6 5/7/19 1 x jar SB2_0.5-0.6 5/7/19 . 1 × jar QCP_5/7/19 5/7/19 1 x jar RB_5/7/19 5/7/19 Addittional bottles for internal lab QAQC TB_5/7/19 5/7/19 1 x jar **Environmental Division** Melbourne Work Order Reference Telephone: + 61-3-8549 9600 Received By: Marron (Ann Temp (°C) on Receipt Time Signature:

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM1910802

ENVIRONMENTAL MANAGEMENT & Laboratory Environmental Division Melbourne

CONSULTING P/L

Contact MR SIMON CHISLETT Contact Customer Services EM

Address LEVEL 2 BIGGENS BUILDING 67 Address 4 Westall Rd Springvale VIC Australia

LETITIA STREET

NORTH HOBART TASMANIA,

AUSTRALIA 7000

F-mail simon@enviromac.com.au F-mail ALSEnviro.Melbourne@alsglobal.com

Telephone +61 0408 391 738 Telephone +61-3-8549 9600 Facsimile Facsimile +61 03 6231 5979 +61-3-8549 9626

Project EMC1927 Page

Order number Quote number EB2017ENVMANCON0001 (EN/222)

C-O-C number QC Level NEPM 2013 B3 & ALS QC Standard Site McRobbies Waste Transfer Station

Sampler ALEX LOVIBOND

Dates

Date

: 09-Jul-2019 14:35 Issue Date 09-Jul-2019 Scheduled Reporting Date Client Requested Due : 16-Jul-2019 17-Jul-2019

Date Samples Received

Delivery Details

Mode of Delivery Security Seal Carrier Intact.

No. of coolers/boxes Temperature 1.2°C - Ice Bricks present

Receipt Detail No. of samples received / analysed · 7/7

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- The scheduled reporting date has been extended due to analytical testing conducted by ALS interstate laboratories. Please refer to your quotation for further information.
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples
- Analytical work for this work order will be conducted at ALS Springvale & ALS Newcastle.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date 09-Jul-2019

Page Work Order Client 2 of 3 EM1910802 Amendment 0

ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determinitasks, that are inclifing sampling default 00:00 on	ry for the execution may contain ad ation of moisture suded in the package. It is provided, the date of sampling	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	SOIL - EA055-103 Moisture Content	SOIL - P-20/1 TAS EPA 105 (no TBT)	SOIL - P-22 (Melb) Soil Characterisation Package	SOIL - S-03 15 Metals (NEPM 2013 Suite - incl. Digestion)	SOIL - S-04 TRHIBTEXN	SOIL - S-18 TRH(C6-C9)/BTEXN
EM1910802-001	05-Jul-2019 00:00	SB1/0.075-0.125	✓	1				
EM1910802-002	05-Jul-2019 00:00	SB1/1.0-1.1	1		1	1	1	
EM1910802-003	05-Jul-2019 00:00	SB1/1.5-1.6	1			1	1	
EM1910802-004	05-Jul-2019 00:00	SB2/0.5-06	1			1	1	
EM1910802-005	05-Jul-2019 00:00	QCP_5/7/19	1				1	
EM1910802-007	05-Jul-2019 00:00	TB 5/7/19	1					1

Matrix: WATER			W-04 N
Laboratory sample	Client sampling	Client sample ID	TER-/
ID	date / time		¥ F
EM1910802-006	05-Jul-2019 00:00	RB 5/7/19	1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Page 75 **ATTACHMENT D**

Issue Date 09-Jul-2019

Page Work Order Client 3 of 3 EM1910802 Amendment 0

ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Requested Deliverables

(COA_GL_EPA_WASTE)

ALEX LOVIBOND

ALEX LOVIBOND		
- *AU Certificate of Analysis - NATA (COA)	Email	alex@enviromac.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	alex@enviromac.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	alex@enviromac.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	alex@enviromac.com.au
- Attachment - Report (SUBCO)	Email	alex@enviromac.com.au
- Chain of Custody (CoC) (COC)	Email	alex@enviromac.com.au
- EDI Format - ENMRG (ENMRG)	Email	alex@enviromac.com.au
- EDI Format - XTab (XTAB)	Email	alex@enviromac.com.au
 EPA Waste Classification & Categorisation Guideline Report 	Email	alex@enviromac.com.au
(COA_GL_EPA_WASTE)		
ALL INVOICES		
- A4 - AU Tax Invoice (INV)	Email	admin@enviromac.com.au
SIMON CHISLETT		
- *AU Certificate of Analysis - NATA (COA)	Email	simon@enviromac.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	simon@enviromac.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	simon@enviromac.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	simon@enviromac.com.au
- Attachment - Report (SUBCO)	Email	simon@enviromac.com.au
- Chain of Custody (CoC) (COC)	Email	simon@enviromac.com.au
- EDI Format - ENMRG (ENMRG)	Email	simon@enviromac.com.au
- EDI Format - XTab (XTAB)	Email	simon@enviromac.com.au
 EPA Waste Classification & Categorisation Guideline Report 	Email	simon@enviromac.com.au

CERTIFICATE OF ANALYSIS

Work Order Page : EM1910802 1 of 10

Client **ENVIRONMENTAL MANAGEMENT & CONSULTING P/L** Laboratory Environmental Division Melbourne

Contact MR SIMON CHISLETT Contact Customer Services EM

Address LEVEL 2 BIGGENS BUILDING 67 LETITIA STREET Address 4 Westall Rd Springvale VIC Australia 3171 NORTH HOBART TASMANIA, AUSTRALIA 7000

Telephone Telephone +61 0408 391 738 +61-3-8549 9600

Senior Organic Chemist

Project EMC1927 Date Samples Received 09-Jul-2019 14:35 Order number Date Analysis Commenced 11-Jul-2019

C-O-C number Issue Date Sampler ALEX LOVIBOND

Site McRobbies Waste Transfer Station

Quote number : EN/222 No. of samples received : 7 No. of samples analysed : 7

18-Jul-2019 18:53

Melbourne Organics, Springvale, VIC

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Xing Lin

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Arenie Vijayaratnam	Non-metals prep supervisor	Melbourne Inorganics, Springvale, VIC
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC

Page : 2 of 10 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project · EMC1927

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing numbers.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for TEQ Zero' are treated as zero, for TEQ 1/2LOR' are treated as half the reported LOR, and for TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).

Page : 3 of 10 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB1/0.075-0.125	SB1/1.0-1.1	SB1/1.5-1.6	SB2/0.5-06	QCP_5/7/19
	Cli	ient samplii	ng date / time	05-Jul-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1910802-001	EM1910802-002	EM1910802-003	EM1910802-004	EM1910802-005
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M CaCl ex	tract							
pH (CaCl2)		0.1	pH Unit		5.6			
EA055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		1.0	%	4.7	23.3	22.0	18.4	5.1
EA150: Soil Classification based on Pa	article Size							
Clay (<2 µm)		1	%		23			
A152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3		2.70			
ED007: Exchangeable Cations			J					
Exchangeable Calcium		0.1	meq/100g		8.5			
Exchangeable Magnesium		0.1	meq/100g		10.4			
Exchangeable Potassium		0.1	meq/100g		0.2			
Exchangeable Sodium		0.1	meq/100g		0.8			
Cation Exchange Capacity		0.1	meq/100g		20.0			
		0.1	meq/100g		20.0			
EG005(ED093)T: Total Metals by ICP-A							_	
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	
Barium	7440-39-3	10	mg/kg	40	90	100	40	
Beryllium	7440-41-7	1	mg/kg	<1	1	<1	<1	
Boron	7440-42-8	50	mg/kg		<50	<50	<50	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	5	19	12	6	
Cobalt	7440-48-4	2	mg/kg	9	11	16	<2	
Copper	7440-50-8	5	mg/kg	72	15	14	6	
Iron	7439-89-6	0.005	%		2.24			
Lead	7439-92-1	5	mg/kg	<5	8	7	6	
Manganese	7439-96-5	5	mg/kg	213	145	116	46	
Molybdenum	7439-98-7	2	mg/kg	<2				
Nickel	7440-02-0	2	mg/kg	11	13	13	<2	
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	
Silver	7440-22-4	2	mg/kg	<2				
Tin	7440-31-5	5	mg/kg	<5				
Vanadium	7440-62-2	5	mg/kg		62	53	23	
Zinc	7440-66-6	5	mg/kg	29	37	29	11	
G035T: Total Recoverable Mercury b	y FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	

 Page
 : 4 of 10

 Work Order
 : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

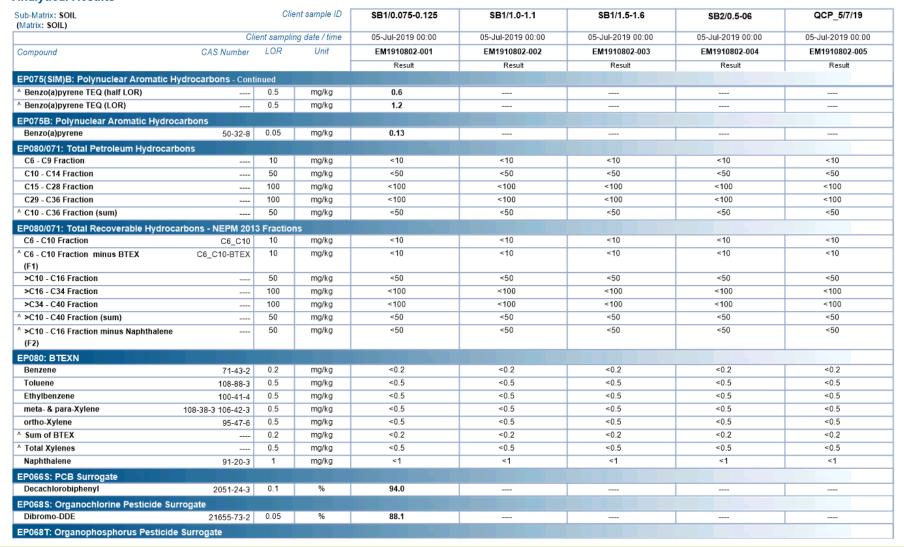
ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB1/0.075-0.125	SB1/1.0-1.1	SB1/1.5-1.6	SB2/0.5-06	QCP_5/7/19
	Cli	ient samplii	ng date / time	05-Jul-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1910802-001	EM1910802-002	EM1910802-003	EM1910802-004	EM1910802-005
				Result	Result	Result	Result	Result
EG048: Hexavalent Chromium (Alkalir	ne Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5				
EK026SF: Total CN by Segmented Fig	ow Analyser							
Total Cyanide	57-12-5	1	mg/kg	<1				
EK040T: Fluoride Total								
Fluoride	16984-48-8	40	mg/kg	110				
EP004: Organic Matter								
Organic Matter		0.5	%		<0.5			
Total Organic Carbon		0.5	%		<0.5			
EP066: Polychlorinated Biphenyls (PC								
Total Polychlorinated biphenyls	(a.	0.1	mg/kg	<0.1				
		0.1	Hight	-V. 1				
EP068A: Organochlorine Pesticides (Galpha-BHC		0.05	mg/kg	<0.05				
Hexachlorobenzene (HCB)	319-84-6	0.05	mg/kg	<0.05				
beta-BHC	118-74-1 319-85-7	0.05	mg/kg	<0.05				
gamma-BHC		0.05	mg/kg	<0.05				
delta-BHC	58-89-9	0.05	mg/kg	<0.05				
Heptachlor	319-86-8	0.05	mg/kg	<0.05				
Aldrin	76-44-8	0.05	mg/kg	<0.05				
	309-00-2	0.05	mg/kg	<0.05				
Heptachlor epoxide ^ Total Chlordane (sum)	1024-57-3	0.05	mg/kg	<0.05				
	5400.74.0			<0.05				
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05				
alpha-Endosulfan cis-Chlordane	959-98-8	0.05	mg/kg mg/kg	<0.05	****			
Dieldrin	5103-71-9			<0.05				
4.4'-DDE	60-57-1	0.05	mg/kg	<0.05				
Endrin	72-55-9	0.05	mg/kg mg/kg	<0.05				
	72-20-8	0.05		<0.05				
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05				
Endosulfan (sum)	115-29-7		mg/kg					
4.4'-DDD	72-54-8	0.05	mg/kg	<0.05	****			
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05				
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05				
4.4'-DDT	50-29-3	0.2	mg/kg	<0.2				
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05				
Methoxychlor	72-43-5	0.2	mg/kg	<0.2				

Page : 5 of 10 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927


ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB1/0.075-0.125	SB1/1.0-1.1	SB1/1.5-1.6	SB2/0.5-06	QCP_5/7/19
	Cli	ient samplii	ng date / time	05-Jul-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1910802-001	EM1910802-002	EM1910802-003	EM1910802-004	EM1910802-005
•				Result	Result	Result	Result	Result
EP068A: Organochlorine Pestici	des (OC) - Continued							
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05				
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.05	mg/kg	<0.05				
EP075(SIM)A: Phenolic Compou								
Phenol	108-95-2	0.5	mg/kg	<0.5				
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5				
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5				
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1				
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5				
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5				
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5				
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5				
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5				
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5				
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5				
Pentachlorophenol	87-86-5	2	mg/kg	<2				
Sum of Phenois		0.5	mg/kg	<0.5				
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5				
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5				
Acenaphthene	83-32-9	0.5	mg/kg	<0.5				
Fluorene	86-73-7	0.5	mg/kg	<0.5				
Phenanthrene	85-01-8	0.5	mg/kg	<0.5				
Anthracene	120-12-7	0.5	mg/kg	<0.5				
Fluoranthene	206-44-0	0.5	mg/kg	<0.5				
Pyrene	129-00-0	0.5	mg/kg	<0.5				
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5				
Chrysene	218-01-9	0.5	mg/kg	<0.5				
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5				
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5				
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5				
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5				
Sum of polycyclic aromatic hydrod	carbons	0.5	mg/kg	<0.5				
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5				

Page : 6 of 10 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project · EMC192

Page : 7 of 10 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID			SB1/1.0-1.1	SB1/1.5-1.6	SB2/0.5-06	QCP_5/7/19
	Cli	ent samplir	ng date / time	05-Jul-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1910802-001	EM1910802-002	EM1910802-003	EM1910802-004	EM1910802-005
			1	Result	Result	Result	Result	Result
EP068T: Organophosphorus Pes	ticide Surrogate - Continu	ied						
DEF	78-48-8	0.05	%	95.3				
EP075(SIM)S: Phenolic Compour	nd Surrogates							
Phenol-d6	13127-88-3	0.5	%	89.7				
2-Chlorophenol-D4	93951-73-6	0.5	%	92.5				
2.4.6-Tribromophenol	118-79-6	0.5	%	75.1				
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	104				
Anthracene-d10	1719-06-8	0.5	%	123				
4-Terphenyl-d14	1718-51-0	0.5	%	110				
EP075T: Base/Neutral Extractable	e Surrogates							
2-Fluorobiphenyl	321-60-8	0.025	%	116				
Anthracene-d10	1719-06-8	0.025	%	116				
4-Terphenyl-d14	1718-51-0	0.025	%	116				
EP080S: TPH(V)/BTEX Surrogate	s							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	96.2	97.8	77.4	66.3	94.9
Toluene-D8	2037-26-5	0.2	%	104	93.9	80.0	64.6	95.8
4-Bromofluorobenzene	460-00-4	0.2	%	122	114	93.6	78.6	108

Page : 8 of 10 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

•							
Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_5/7/19		 	
	Cli	ent sampli	ng date / time	05-Jul-2019 00:00		 	
Compound	CAS Number	LOR	Unit	EM1910802-007		 	
				Result		 	
EA055: Moisture Content (Dried @ 1	05-110°C)						
Moisture Content		1.0	%	<1.0		 	
EP080/071: Total Petroleum Hydroc	arbons						
C6 - C9 Fraction		10	mg/kg	<10		 	
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 201	3 Fractio	ns				
C6 - C10 Fraction	C6_C10	10	mg/kg	<10		 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10		 	
(F1)							
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	****	 	
Toluene	108-88-3	0.5	mg/kg	<0.5		 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	****	 	****
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5		 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5		 	****
^ Sum of BTEX		0.2	mg/kg	<0.2		 	
^ Total Xylenes		0.5	mg/kg	<0.5		 	
Naphthalene	91-20-3	1	mg/kg	<1		 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	78.5		 	
Toluene-D8	2037-26-5	0.2	%	78.0		 	
4-Bromofluorobenzene	460-00-4	0.2	%	89.7		 	

 Page
 9 of 10

 Work Order
 EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RB_5/7/19	 	
	CI	lient samplii	ng date / time	05-Jul-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EM1910802-006	 	 *******
				Result	 	
EP080/071: Total Petroleum Hydrocar	bons					
C6 - C9 Fraction		20	μg/L	<20	 	
C10 - C14 Fraction		50	μg/L	<50	 	
C15 - C28 Fraction		100	μg/L	<100	 	
C29 - C36 Fraction		50	μg/L	<50	 	
^ C10 - C36 Fraction (sum)		50	μg/L	<50	 	
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	15			
C6 - C10 Fraction	C6_C10	20	μg/L	<20	 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	μg/L	<20	 	
(F1)	_					
>C10 - C16 Fraction		100	μg/L	<100	 	
>C16 - C34 Fraction		100	μg/L	<100	 	
>C34 - C40 Fraction		100	μg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	μg/L	<100	 	
^ >C10 - C16 Fraction minus Naphthalene		100	μg/L	<100	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	1	μg/L	<1	 	
Toluene	108-88-3	2	μg/L	<2	 	
Ethylbenzene	100-41-4	2	μg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	 	
ortho-Xylene	95-47-6	2	μg/L	<2	 	
^ Total Xylenes		2	μg/L	<2	 	
^ Sum of BTEX		1	μg/L	<1	 	
Naphthalene	91-20-3	5	μg/L	<5	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	98.2	 	
Toluene-D8	2037-26-5	2	%	92.2	 	
4-Bromofluorobenzene	460-00-4	2	%	91.1	 	

Page 10 of 10 EM1910802 Work Order

Client ENVIRONMENTAL MANAGEMENT & CONSULTING P/L EMC1927

Project

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	36	140
EP068S: Organochlorine Pesticide Surrogate	e		
Dibromo-DDE	21655-73-2	38	128
EP068T: Organophosphorus Pesticide Surro	gate		
DEF	78-48-8	33	139
EP075(SIM)S: Phenolic Compound Surrogat	es		
Phenol-d6	13127-88-3	54	125
2-Chlorophenol-D4	93951-73-6	65	123
2.4.6-Tribromophenol	118-79-6	34	122
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	61	125
Anthracene-d10	1719-06-8	62	130
4-Terphenyl-d14	1718-51-0	67	133
EP075T: Base/Neutral Extractable Surrogate			
2-Fluorobiphenyl	321-60-8	35	126
Anthracene-d10	1719-06-8	40	135
4-Terphenyl-d14	1718-51-0	42	133
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	125
Toluene-D8	2037-26-5	55	125
4-Bromofluorobenzene	460-00-4	56	124
Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	129
Toluene-D8	2037-26-5	70	125
4-Bromofluorobenzene	460-00-4	71	129

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

QUALITY CONTROL REPORT

: 1 of 15

Work Order : EM1910802 Page

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L Laboratory : Environmental Division Melbourne

Contact : MR SIMON CHISLETT Contact : Customer Services EM

: LEVEL 2 BIGGENS BUILDING 67 LETITIA STREET Address : 4 Westall Rd Springvale VIC Australia 3171 NORTH HOBART TASMANIA, AUSTRALIA 7000

Telephone : +61 0408 391 738 Telephone : +61-3-8549 9600

Project : EMC1927 Date Samples Received : 09-Jul-2019
Order number Date Analysis Commenced : 11-Jul-2019

C-O-C number : ---- Issue Date : 18-Jul-2019

Sampler : ALEX LOVIBOND
Site : McRobbies Waste Transfer Station

Quote number : EN/222
No. of samples received : 7

No. of samples analysed: 7

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

. Matrix Spike (MS) Report; Recovery and Acceptance Limits

This Quality Control Report contains the following information:

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Arenie Vijayaratnam Non-metals prep supervisor Melbourne Inorganics, Springvale, VIC
Dianne Blane Laboratory Coordinator (2IC) Newcastle - Inorganics, Mayfield West, NSW
Dilani Fernando Senior Inorganic Chemist Melbourne Inorganics, Springvale, VIC
Xing Lin Senior Organic Chemist Melbourne Organics, Springvale, VIC

Page : 2 of 15 Work Order : EM1910802

Client • ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project - EMC1927

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 2467114)									
EM1910802-001	SB1/0.075-0.125	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.00	No Limit		
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit		
		EG005T: Barium	7440-39-3	10	mg/kg	40	40	0.00	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	5	6	0.00	No Limit		
		EG005T: Cobalt	7440-48-4	2	mg/kg	9	10	10.8	No Limit		
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.00	No Limit		
		EG005T: Nickel	7440-02-0	2	mg/kg	11	12	12.4	No Limit		
		EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	72	81	11.3	0% - 50%		
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit		
		EG005T: Manganese	7439-96-5	5	mg/kg	213	247	14.9	0% - 20%		
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit		
		EG005T: Tin	7440-31-5	5	mg/kg	<5	<5	0.00	No Limit		
		EG005T: Vanadium	7440-62-2	5	mg/kg	43	45	3.94	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	29	31	7.19	No Limit		
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.00	No Limit		
		EG005T: Iron	7439-89-6	50	mg/kg	21400	24400	13.0	0% - 20%		
M1910874-006	Anonymous	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.00	No Limit		
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit		
		EG005T: Barium	7440-39-3	10	mg/kg	20	30	42.6	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	11	11	0.00	No Limit		
		EG005T: Cobalt	7440-48-4	2	mg/kg	3	4	0.00	No Limit		
		EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	<2	0.00	No Limit		
		EG005T; Nickel	7440-02-0	2	mg/kg	11	10	11.3	No Limit		

Page : 3 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	otal Metals by ICP-AES	(QC Lot: 2467114) - continued							
EM1910874-006	Anonymous	EG005T: Silver	7440-22-4	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	6	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	6	10	42.6	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Manganese	7439-96-5	5	mg/kg	68	72	5.65	0% - 50%
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Tin	7440-31-5	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Vanadium	7440-62-2	5	mg/kg	11	12	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	19	20	6.24	No Limit
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.00	No Limit
		EG005T: Iron	7439-89-6	50	mg/kg	7220	6950	3.80	0% - 20%
EA001: pH in soil u	sing 0.01M CaCl extract	(QC Lot: 2460331)							
EM1910773-003	Anonymous	EA001; pH (CaCl2)		0.1	pH Unit	8.0	8.1	1.24	0% - 20%
EM1910810-005	Anonymous	EA001: pH (CaCl2)		0.1	pH Unit	6.2	6.3	1.60	0% - 20%
EA055: Moisture C	ontent (Dried @ 105-110	°C) (QC Lot: 2464751)							
EB1917962-003	Anonymous	EA055: Moisture Content		0.1	%	17.9	20.9	15.6	0% - 20%
EM1910840-003	Anonymous	EA055: Moisture Content		0.1	%	3.4	3.9	13.8	0% - 20%
ED007: Exchangea	ble Cations (QC Lot: 24								
EM1910802-002	SB1/1.0-1.1	ED007: Exchangeable Calcium		0.1	meq/100g	8.5	8.5	0.00	0% - 20%
		ED007: Exchangeable Magnesium		0.1	meg/100g	10.4	10.0	2.99	0% - 20%
		ED007: Exchangeable Potassium		0.1	meg/100g	0.2	0.2	0.00	No Limit
		ED007: Exchangeable Sodium		0.1	meq/100g	0.8	0.8	0.00	No Limit
		ED007: Cation Exchange Capacity		0.1	meg/100g	20.0	19.6	1.67	0% - 20%
G035T: Total Rec	overable Mercury by FII								
EM1910802-001	SB1/0.075-0.125	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EM1910874-006	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
	,	gest) (QC Lot: 2465129)	1100010	0.1	11191119		V.1	0.00	110 2.11111
EM1910547-029	Anonymous	EG048G: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EM1910898-017	Anonymous	EG048G: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		nalyser (QC Lot: 2468422)	10340-23-3	0.5	Highty	-0.5	-0.5	0.00	140 Ellilli
EM1910547-029			57-12-5	1	ma/lea	-1		0.00	No Limit
EM1910547-029 EM1910716-003	Anonymous	EK026SF: Total Cyanide		1	mg/kg	<1	<1	0.00	No Limit
	Anonymous	EK026SF: Total Cyanide	57-12-5	1	mg/kg	<1	<1	0.00	No Limit
	otal (QC Lot: 2465112)		1000						
EM1910802-001	SB1/0.075-0.125	EK040T: Fluoride	16984-48-8	40	mg/kg	110	120	0.00	No Limit
EM1910878-002	Anonymous	EK040T: Fluoride	16984-48-8	40	mg/kg	740	820	11.3	0% - 20%
	tter (QC Lot: 2465321)								
EM1910802-002	SB1/1.0-1.1	EP004: Organic Matter		0.5	%	<0.5	<0.5	0.00	No Limit
		EP004: Total Organic Carbon		0.5	%	<0.5	<0.5	0.00	No Limit

Page : 4 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P066: Polychlorina	ated Biphenyls (PCB) (QC	: Lot: 2467590)							
M1910802-001	SB1/0.075-0.125	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
P068A: Organochi	orine Pesticides (OC) (QC	C Lot: 2467589)							
M1910802-001	SB1/0.075-0.125	EP068: alpha-BHC	319-84-6	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
P075(SIM)A: Phen	olic Compounds (QC Lot:	: 2467591)							
M1910912-019	Anonymous	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<2	<2	0.00	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.00	No Limit
M1910802-001	SB1/0.075-0.125	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	< 0.5	0.00	No Limit

Page : 5 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Sub-Matrix: SOIL						Laboratory i	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)A: Pheno	olic Compounds (QC L	ot: 2467591) - continued							
EM1910802-001	SB1/0.075-0.125	EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.00	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.00	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 2467591)							
EM1910912-019	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		, , ,	205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<1.1	<1.1	0.00	No Limit
EM1910802-001	SB1/0.075-0.125	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page : 6 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P075(SIM)B: Polyn	uclear Aromatic Hydrod	carbons (QC Lot: 2467591) - continued							
EM1910802-001	SB1/0.075-0.125	EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
P075B: Polynuclea	r Aromatic Hydrocarbo	ns (QC Lot: 2467397)							
EM1910802-001	SB1/0.075-0.125	EP075-TAS: Benzo(a)pyrene	50-32-8	0.05	mg/kg	0.13	0.12	10.8	No Limit
P080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 2463005)							
M1910802-001	SB1/0.075-0.125	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
M1910965-058	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
P080/071: Total Pe	troleum Hydrocarbons								
M1910802-001	SB1/0.075-0.125	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
	00 1101010 01120	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
M1910912-019	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
	,	EP071: C29 - C36 Fraction		100	mg/kg	180	230	24.6	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	180	230	24.4	No Limit
P080/071: Total Pe	troleum Hydrocarbons	, ,							
M1910965-058	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
M1910965-058	,	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
M1910965-048	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
P080/071: Total Re	coverable Hydrocarbon	s - NEPM 2013 Fractions (QC Lot: 2463005)							
M1910802-001	SB1/0.075-0.125	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
M1910965-058	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
P080/071: Total Re	coverable Hydrocarbon	s - NEPM 2013 Fractions (QC Lot: 2467592)							
M1910802-001	SB1/0.075-0.125	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
	00 1101010 01120	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
M1910912-019	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	120	160	26.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	270	350	24.4	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	390	510	26.7	0% - 50%
P080/071: Total Re	coverable Hydrocarbon	s - NEPM 2013 Fractions (QC Lot: 2467601)							
M1910965-058	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit

Page : 7 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EP080/071: Total R	ecoverable Hydrocarbon	s - NEPM 2013 Fractions (QC Lot: 2467601) - co	ntinued						
EM1910965-058	Anonymous	EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EM1910965-048	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EP080: BTEXN (QC	Lot: 2463005)								
EM1910802-001	SB1/0.075-0.125	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
EM1910965-058	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
	etroleum Hydrocarbons								
EM1910713-002	Anonymous	EP071; C15 - C28 Fraction		100	μg/L	<100	<100	0.00	No Limit
	,	EP071: C10 - C14 Fraction		50	μg/L	<50	<50	0.00	No Limit
		EP071: C29 - C36 Fraction		50	μg/L	<50	<50	0.00	No Limit
EP080/071: Total Pe	etroleum Hydrocarbons								
EM1910830-005	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.00	No Limit
EM1910890-002	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
	-	ns - NEPM 2013 Fractions (QC Lot: 2457173)			P 3-2				
EM1910713-002	Anonymous			100	μg/L	<100	<100	0.00	No Limit
LWI1910713-002	Allollyllious	EP071: >C10 - C16 Fraction EP071: >C16 - C34 Fraction		100	μg/L	<100	<100	0.00	No Limit
				100	μg/L	<100	<100	0.00	No Limit
EB000/071: Total B	anni arabin Liverandan	EP071: >C34 - C40 Fraction		100	ру/с	~100	~100	0.00	140 Littill
		ns - NEPM 2013 Fractions (QC Lot: 2464230)	00.010	00		-00	-00	0.00	No. Line
EM1910830-005	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
EM1910890-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC									
EM1910830-005	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit

Page : 8 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC	Lot: 2464230) - continu	ed ed							
EM1910830-005	Anonymous	EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.00	No Limit
EM1910890-002	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µa/L	<5	<5	0.00	No Limit

Page : 9 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES (QCL	ot: 2467114)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	89.0	78	107	
EG005T: Barium	7440-39-3	10	mg/kg	<10	143 mg/kg	98.5	76	110	
EG005T: Beryllium	7440-41-7	1	mg/kg	<1	5.63 mg/kg	101	84	113	
EG005T: Boron	7440-42-8	50	mg/kg	<50	33.2 mg/kg	102	84	126	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	85.7	76	108	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	92.1	78	110	
EG005T: Cobalt	7440-48-4	2	mg/kg	<2	16 mg/kg	90.9	78	112	
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	91.7	78	108	
EG005T: Iron	7439-89-6	50	mg/kg	<50	8400 mg/kg	88.2	84	112	
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	89.5	78	106	
EG005T: Manganese	7439-96-5	5	mg/kg	<5	130 mg/kg	99.5	81	110	
EG005T: Molybdenum	7439-98-7	2	mg/kg	<2	7.9 mg/kg	102	78	114	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	96.4	80	109	
EG005T: Selenium	7782-49-2	5	mg/kg	<5	5.37 mg/kg	99.5	92	110	
EG005T: Silver	7440-22-4	2	mg/kg	<2	2.1 mg/kg	93.7	80	108	
EG005T: Tin	7440-31-5	5	mg/kg	<5	5.2 mg/kg	104	78	117	
EG005T: Vanadium	7440-62-2	5	mg/kg	<5	29.6 mg/kg	90.9	78	106	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	94.7	79	110	
ED007: Exchangeable Cations (QCLot: 2465447	7)								
ED007: Exchangeable Calcium		0.1	meq/100g	<0.1	24.13 meq/100g	82.3	80	120	
ED007: Exchangeable Magnesium		0.1	meq/100g	<0.1	1.96 meq/100g	101	64	137	
ED007: Exchangeable Potassium		0.1	meq/100g	<0.1	1.01 meq/100g	109	59	141	
ED007: Exchangeable Sodium		0.1	meq/100g	<0.1	0.86 meq/100g	118	66	134	
ED007: Cation Exchange Capacity		0.1	meq/100g	<0.1					
EG035T: Total Recoverable Mercury by FIMS (QCLot: 2467113)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	88.7	77	104	
EG048: Hexavalent Chromium (Alkaline Digest)	(QCL of: 2465129)								
EG048G: Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	40 mg/kg	80.2	75	112	
EK026SF: Total CN by Segmented Flow Analys	or (OCI ot: 2469422)					1112			
EK026SF: Total CN by Segmented Flow Analys	57-12-5	1	mg/kg	<1	20 mg/kg	127	70	130	
	0, 120		11191119		Longing	16.	, ,	.50	
EK040T: Fluoride Total (QCLot: 2465112)	16984-48-8	40	mg/kg	<40	400 mg/kg	87.8	75	110	
EK040T: Fluoride	10304-40-6	40	Hig/kg	~40	400 Hig/kg	07.0	10	110	

Page : 10 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP004: Organic Matter (QCLot: 2465321) - continue	ed							
EP004: Organic Matter		0.5	%	<0.5	77 %	79.2	71	109
EP004: Total Organic Carbon		0.5	%	<0.5	43.5 %	81.3	73	111
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 2	467590)							
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	103	63	115
EP068A: Organochlorine Pesticides (OC) (QCLot: 2	2467589)							
P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	93.4	69	122
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	< 0.05	0.5 mg/kg	95.4	71	122
P068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	93.4	72	121
P068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	117	66	124
P068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	94.2	60	120
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	92.7	62	120
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	96.0	70	122
P068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	90.2	70	121
P068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	109	68	124
P068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	75.8	71	124
P068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	98.9	71	122
P068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	92.6	65	123
P068: 4.4'-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	100	71	121
P068: Endrin	72-20-8	0.05	mg/kg	< 0.05	0.5 mg/kg	95.9	63	129
P068: beta-Endosulfan	33213-65-9	0.05	mg/kg	< 0.05	0.5 mg/kg	100	70	122
P068: 4.4'-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	99.4	69	128
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	< 0.05	0.5 mg/kg	77.4	69	129
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	81.2	64	129
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	73.9	62	129
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	77.4	76	123
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	76.4	58	129
EP075(SIM)A: Phenolic Compounds (QCLot: 24675	91)							
P075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	3 mg/kg	96.3	77	125
P075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	3 mg/kg	97.9	78	126
P075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	3 mg/kg	104	77	125
P075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	6 mg/kg	106	76	130
P075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	3 mg/kg	100	53	118
P075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	3 mg/kg	104	71	128
P075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	3 mg/kg	103	73	126
P075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	3 mg/kg	99.7	73	128
P075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	3 mg/kg	94.6	69	123
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	3 mg/kg	86.3	64	122
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	3 mg/kg	97.7	70	128

Page : 11 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Sub-Matrix: SOIL				Method Blank (MB)		S) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P075(SIM)A: Phenolic Compounds (QCLot: 2467591) - con	tinued							
P075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	6 mg/kg	59.8	20	113
P075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot:	2467591)							
P075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	104	77	129
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	105	74	130
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	103	78	129
:P075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	99.0	78	128
P075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	103	83	130
P075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	109	76	129
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	108	79	134
P075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	113	84	135
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	102	72	125
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	110	76	135
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	3 mg/kg	94.4	69	123
	205-82-3							
P075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	106	77	131
P075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	103	65	124
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	103	66	127
P075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	106	65	124
EP075B: Polynuclear Aromatic Hydrocarbons (QCLot: 2467)	397)							
P075-TAS: Benzo(a)pyrene	50-32-8	0.05	mg/kg	<0.05	2 mg/kg	95.3	75	130
P080/071: Total Petroleum Hydrocarbons (QCLot: 2463005								
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	110	61	127
P080/071: Total Petroleum Hydrocarbons (QCLot: 2467592	<u> </u>							
P071: C10 - C14 Fraction		50	mg/kg	<50	688 mg/kg	106	72	122
P071: C15 - C28 Fraction		100	mg/kg	<100	3100 mg/kg	110	84	123
P071: C29 - C36 Fraction		100	mg/kg	<100	1490 mg/kg	102	79	119
EP071: C10 - C36 Fraction (sum)		50	ma/ka	<50				
EP080/071: Total Petroleum Hydrocarbons (QCLot: 2467601								
EP071: C10 - C14 Fraction		50	mg/kg	<50	688 mg/kg	115	72	122
EP071: C15 - C28 Fraction		100	mg/kg	<100	3100 mg/kg	105	84	123
EP071; C19 - C36 Fraction		100	mg/kg	<100	1490 mg/kg	102	79	119
P071: C10 - C36 Fraction (sum)		50	mg/kg	<50	1400 Hig/kg	102		
			Highlig	-50				
P080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fr		ot: 2463005) 10	ma/ka	<10	45 ma/ka	110	60	125
P080: C6 - C10 Fraction	C6_C10		mg/kg	<10	45 ing/kg	110	60	125
P080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fr	actions (QCL							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1050 mg/kg	105	77	121
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3960 mg/kg	103	83	121
EP071: >C34 - C40 Fraction		100	mg/kg	<100	280 mg/kg	114	65	123

Page : 12 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 F	ractions (QCL	ot: 2467592) - co	ontinued						
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50					
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 F	ractions (QCL	ot: 2467601)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1050 mg/kg	106	77	121	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3960 mg/kg	103	83	121	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	280 mg/kg	107	65	123	
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50					
EP080: BTEXN (QCLot: 2463005)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	93.5	63	119	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	100	67	126	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	96.7	66	124	
EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	4 mg/kg	102	68	128	
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	104	73	128	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	100	61	123	
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	i) Report		
DUD-WIGHIA. WATER				Report	Spike	Spike Recovery (%)		Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 245717	3)								
EP071: C10 - C14 Fraction		50	μg/L	<50	4030 μg/L	95.4	50	129	
EP071: C15 - C28 Fraction		100	μg/L	<100	15600 µg/L	98.3	55	132	
EP071: C29 - C36 Fraction		50	μg/L	<50	7820 µg/L	94.3	55	130	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 246423	0)								
EP080; C6 - C9 Fraction		20	μg/L	<20	360 µg/L	114	65	126	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 F	Fractions (QCL	ot: 2457173)							
EP071: >C10 - C16 Fraction		100	μg/L	<100	5960 µg/L	92.0	53	129	
EP071: >C16 - C34 Fraction		100	μg/L	<100	20700 µg/L	93.8	56	131	
EP071: >C34 - C40 Fraction		100	μg/L	<100	1520 µg/L	98.6	53	136	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 F	Fractions (QCL	ot: 2464230)							
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	450 μg/L	118	64	124	
EP080: BTEXN (QCLot: 2464230)									
EP080: Benzene	71-43-2	1	μg/L	<1	20 μg/L	102	69	123	
EP080: Toluene	108-88-3	2	μg/L	<2	20 μg/L	103	73	124	
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	20 μg/L	102	71	125	
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	40 μg/L	109	72	129	
	106-42-3								
EP080; ortho-Xylene	95-47-6	2	μg/L	<2	20 μg/L	112	76	129	
EP080: Naphthalene	91-20-3	5	μg/L	<5	5 μg/L	114	70	125	

Page : 13 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ıb-Matrix: SOIL					atrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	Limits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
G005(ED093)T: 1	otal Metals by ICP-AES (QCLot: 2467114)							
EM1910802-002	SB1/1.0-1.1	EG005T: Manganese	7439-96-5	50 mg/kg	87.5	68	136	
EM1910802-002	SB1/1.0-1.1	EG005T: Arsenic	7440-38-2	50 mg/kg	83.3	78	124	
		EG005T: Barium	7440-39-3	50 mg/kg	98.0	71	135	
		EG005T: Beryllium	7440-41-7	50 mg/kg	93.7	85	125	
		EG005T: Cadmium	7440-43-9	50 mg/kg	85.1	84	116	
		EG005T: Chromium	7440-47-3	50 mg/kg	86.2	79	121	
		EG005T: Copper	7440-50-8	50 mg/kg	89.0	82	124	
		EG005T: Lead	7439-92-1	50 mg/kg	86.6	76	124	
		EG005T: Molybdenum	7439-98-7	50 mg/kg	96.6	79	117	
		EG005T: Nickel	7440-02-0	50 mg/kg	94.8	78	120	
		EG005T: Selenium	7782-49-2	50 mg/kg	80.9	71	125	
		EG005T: Vanadium	7440-62-2	50 mg/kg	82.6	76	124	
		EG005T: Zinc	7440-66-6	50 mg/kg	91.8	74	128	
G035T: Total Re	coverable Mercury by FIMS (QCLot: 2467113)							
EM1910802-002	SB1/1.0-1.1	EG035T: Mercury	7439-97-6	0.5 mg/kg	102	76	116	
G048: Hexavalen	t Chromium (Alkaline Digest) (QCLot: 2465129							
EM1910682-007	Anonymous	EG048G: Hexavalent Chromium	18540-29-9	40 mg/kg	66.1	58	114	
K026SF: Total C	N by Segmented Flow Analyser (QCLot: 24684	122)						
EM1910682-007	Anonymous	EK026SF: Total Cyanide	57-12-5	20 mg/kg	91.6	70	130	
EK040T: Fluoride	Total (QCLot: 2465112)							
EM1910874-001	Anonymous	EK040T: Fluoride	16984-48-8	400 mg/kg	86.8	70	130	
P004: Organic M	atter (QCLot: 2465321)							
EM1910912-019	Anonymous	EP004: Organic Matter		1.2406 %	71.0	70	120	
	,	EP004: Total Organic Carbon		0.71954 %	70.9	70	120	
P066: Polychlori	nated Biphenyls (PCB) (QCLot: 2467590)							
EM1910879-025	Anonymous	EP066: Total Polychlorinated biphenyls		1 mg/kg	142	44	144	
P068A: Organoc	hlorine Pesticides (OC) (QCLot: 2467589)	The state of the s						
EM1910912-001	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	93.8	22	139	
		EP068: Heptachlor	76-44-8	0.5 mg/kg	92.1	18	130	
		EP068: Aldrin	309-00-2	0.5 mg/kg	103	23	136	
		EP068: Dieldrin	60-57-1	0.5 mg/kg	100	42	136	
		E. 000. Dicidili	72-20-8	0.5 mg/kg	92.7		.00	

Page : 14 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P068A: Organoch	lorine Pesticides (OC) (QCLot: 2467589) - continu	red					
EM1910912-001	Anonymous	EP068: 4.4'-DDT	50-29-3	0.5 mg/kg	40.2	20	133
P075(SIM)A: Phe	nolic Compounds (QCLot: 2467591)						
EM1910882-001	Anonymous	EP075(SIM): Phenol	108-95-2	3 mg/kg	98.0	63	117
		EP075(SIM): 2-Chlorophenol	95-57-8	3 mg/kg	97.8	65	123
		EP075(SIM): 2-Nitrophenol	88-75-5	3 mg/kg	93.8	40	134
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	3 mg/kg	63.0	56	122
		EP075(SIM): Pentachlorophenol	87-86-5	3 mg/kg	49.6	15	139
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 2467591)						
EM1910882-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	101	67	117
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	112	52	148
P080/071: Total P	etroleum Hydrocarbons (QCLot: 2463005)						
EM1910802-002	SB1/1.0-1.1	EP080: C6 - C9 Fraction		28 mg/kg	68.7	42	131
P080/071: Total P	etroleum Hydrocarbons (QCLot: 2467592)						
EM1910879-024	Anonymous	EP071: C10 - C14 Fraction		688 mg/kg	90.2	53	123
		EP071: C15 - C28 Fraction		3100 mg/kg	99.8	70	124
		EP071: C29 - C36 Fraction		1490 mg/kg	98.0	64	118
P080/071: Total P	etroleum Hydrocarbons (QCLot: 2467601)						
EM1910802-003	SB1/1.5-1.6	EP071; C10 - C14 Fraction		688 mg/kg	116	53	123
		EP071: C15 - C28 Fraction		3100 mg/kg	106	70	124
		EP071; C29 - C36 Fraction		1490 mg/kg	103	64	118
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 2463005)					
EM1910802-002	SB1/1.0-1.1	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	65.5	39	129
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions						
M1910879-024	Anonymous	EP071; >C10 - C16 Fraction		1050 mg/kg	97.2	65	123
-M1010010 024	, alonymous	EP071: >C16 - C34 Fraction		3960 mg/kg	97.6	67	121
		EP071: >C34 - C40 Fraction		280 mg/kg	97.6	44	126
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions						
EM 1910802-003	SB1/1.5-1.6	EP071: >C10 - C16 Fraction		1050 mg/kg	107	65	123
		EP071: >C16 - C34 Fraction		3960 mg/kg	104	67	121
		EP071: >C34 - C40 Fraction		280 mg/kg	108	44	126
P080: BTEXN (Q	CLot: 2463005)						
M1910802-002	SB1/1.0-1.1	EP080: Benzene	71-43-2	2 mg/kg	82.6	50	136
		EP080: Toluene	108-88-3	2 mg/kg	84.7	56	139
ub-Matrix: WATER					atrix Spike (MS) Report		
UD-WIGHTAL THATER				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High

Page : 15 of 15 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Sub-Matrix: WATER		Matrix Spike (MS) Report								
				Spike	SpikeRecovery(%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	Concentration	MS	Low	High				
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2457173)									
EM1910713-003	Anonymous	EP071: C10 - C14 Fraction		4331 µg/L	92.3	50	130			
		EP071: C15 - C28 Fraction		16952 µg/L	90.4	54	136			
		EP071: C29 - C36 Fraction		8695 µg/L	84.6	50	142			
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2464230)									
EM1910890-001	Anonymous	EP080: C6 - C9 Fraction		280 μg/L	85.8	43	125			
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 2457173)								
EM1910713-003	Anonymous	EP071: >C10 - C16 Fraction		6292 µg/L	89.0	50	128			
		EP071: >C16 - C34 Fraction		22143 µg/L	87.5	50	150			
		EP071: >C34 - C40 Fraction		1677 μg/L	89.2	51	159			
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 2464230)										
EM1910890-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	330 µg/L	78.9	44	122			
EP080: BTEXN (Q	EP080: BTEXN (QCLot: 2464230)									
EM1910890-001	Anonymous	EP080: Benzene	71-43-2	20 μg/L	94.1	68	130			
		EP080: Toluene	108-88-3	20 μg/L	98.3	72	132			

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM1910802** Page : 1 of 9

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L Laboratory : Environmental Division Melbourne

 Contact
 : MR SIMON CHISLETT
 Telephone
 : +61-3-8549 9600

 Project
 : EMC1927
 Date Samples Received
 : 09-Jul-2019

Site : McRobbies Waste Transfer Station Issue Date : 18-Jul-2019

Sampler : ALEX LOVIBOND No. of samples received : 7
Order number :---- No. of samples analysed : 7

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 9 Work Order : EM1910802

Client - ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type		Count		(%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
TRH - Semivolatile Fraction	1	14	7.14	10.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL Evaluation: ➤ = Holding time breach: ✓ = Within holding time.

WIGHTAL SOIL					Lvaluation	. ~ = Holding time	breach, * - with	r nording till	
Method Service Control of the Contro			Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA001: pH in soil using 0.01M CaCl extract									
Soil Glass Jar - Unpreserved (EA001) SB1/1.0-1.1		05-Jul-2019	12-Jul-2019	12-Jul-2019	1	12-Jul-2019	12-Jul-2019	√	
EA055: Moisture Content (Dried @ 105-110°C)									
Soil Glass Jar - Unpreserved (EA055) SB1/0.075-0.125, SB1/1.5-1.6, QCP_5/7/19,	SB1/1.0-1.1, SB2/0.5-06, TB_5/7/19	05-Jul-2019	****			15-Jul-2019	19-Jul-2019	✓	
EA150: Soil Classification based on Particle Size									
Snap Lock Bag (EA150H) SB1/1.0-1.1		05-Jul-2019				17-Jul-2019	01-Jan-2020	1	
EA152: Soil Particle Density									
Snap Lock Bag (EA152) SB1/1.0-1.1		05-Jul-2019				17-Jul-2019	01-Jan-2020	1	
ED006: Exchangeable Cations on Alkaline Soils									
Soil Glass Jar - Unpreserved (ED006) SB1/1.0-1.1		05-Jul-2019	15-Jul-2019	02-Aug-2019	1	17-Jul-2019	02-Aug-2019	✓	
ED007: Exchangeable Cations									
Soil Glass Jar - Unpreserved (ED007) SB1/1.0-1.1		05-Jul-2019	15-Jul-2019	02-Aug-2019	1	17-Jul-2019	02-Aug-2019	1	
ED008: Exchangeable Cations									
Soil Glass Jar - Unpreserved (ED008) SB1/1.0-1.1		05-Jul-2019	15-Jul-2019	02-Aug-2019	1	17-Jul-2019	02-Aug-2019	✓	

Page : 3 of 9 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method Service Control of the Contro			Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)				04 1 0000			04 1 0000	_
SB1/0.075-0.125,	SB1/1.0-1.1,	05-Jul-2019	16-Jul-2019	01-Jan-2020	1	16-Jul-2019	01-Jan-2020	✓
SB1/1.5-1.6,	SB2/0.5-06							
EG035T: Total Recoverable Mercury by FIM	IS							
Soil Glass Jar - Unpreserved (EG035T) SB1/0.075-0.125,	SB1/1.0-1.1,	05-Jul-2019	16-Jul-2019	02-Aug-2019	1	16-Jul-2019	02-Aug-2019	1
SB1/1.5-1.6.	SB2/0.5-06	05-041-2013	10-041-2015	02 / lug 20 10	_	10-041-2015	oz / lag zo io	V
EG048: Hexavalent Chromium (Alkaline Dige Soil Glass Jar - Unpreserved (EG048G)	est)							
SB1/0.075-0.125		05-Jul-2019	16-Jul-2019	02-Aug-2019	1	16-Jul-2019	23-Jul-2019	1
EK026SF: Total CN by Segmented Flow Ana	alvser							
Soil Glass Jar - Unpreserved (EK026SF)	u.y.o.i							
SB1/0.075-0.125		05-Jul-2019	16-Jul-2019	19-Jul-2019	1	17-Jul-2019	30-Jul-2019	✓
EK040T: Fluoride Total								
Soil Glass Jar - Unpreserved (EK040T)								
SB1/0.075-0.125		05-Jul-2019	16-Jul-2019	02-Aug-2019	1	17-Jul-2019	02-Aug-2019	✓
EP004: Organic Matter								
Soil Glass Jar - Unpreserved (EP004)		0F Ivil 2040	47 1 2040	00 4 0040		47 1 2040	00 4 0040	
SB1/1.0-1.1		05-Jul-2019	17-Jul-2019	02-Aug-2019	1	17-Jul-2019	02-Aug-2019	- ✓
EP066: Polychlorinated Biphenyls (PCB)								
Soil Glass Jar - Unpreserved (EP066) SB1/0.075-0.125		05-Jul-2019	16-Jul-2019	19-Jul-2019	1	17-Jul-2019	25-Aug-2019	1
		03-041-2013	10-041-2013	13-001-2013	7	17-001-2013	20 Aug 2010	
EP068A: Organochlorine Pesticides (OC) Soil Glass Jar - Unpreserved (EP068)			I	<u> </u>				
SB1/0.075-0.125		05-Jul-2019	16-Jul-2019	19-Jul-2019	1	17-Jul-2019	25-Aug-2019	1
EP075(SIM)A: Phenolic Compounds								_
Soil Glass Jar - Unpreserved (EP075(SIM))			1	1		1		
SB1/0.075-0.125		05-Jul-2019	16-Jul-2019	19-Jul-2019	1	17-Jul-2019	25-Aug-2019	1
EP075(SIM)B: Polynuclear Aromatic Hydroca	arbons							
Soil Glass Jar - Unpreserved (EP075(SIM))								
SB1/0.075-0.125		05-Jul-2019	16-Jul-2019	19-Jul-2019	1	17-Jul-2019	25-Aug-2019	✓
EP075B: Polynuclear Aromatic Hydrocarbon	ns							
Soil Glass Jar - Unpreserved (EP075-TAS)								
SB1/0.075-0.125		05-Jul-2019	16-Jul-2019	19-Jul-2019	1	16-Jul-2019	25-Aug-2019	✓

Page : 4 of 9 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP080)								
SB1/0.075-0.125,	SB1/1.0-1.1,	05-Jul-2019	15-Jul-2019	19-Jul-2019	1	16-Jul-2019	19-Jul-2019	✓
SB1/1.5-1.6,	SB2/0.5-06,							
QCP_5/7/19,	TB_5/7/19							
Soil Glass Jar - Unpreserved (EP071)								
SB1/0.075-0.125		05-Jul-2019	16-Jul-2019	19-Jul-2019	✓	17-Jul-2019	25-Aug-2019	✓
Soil Glass Jar - Unpreserved (EP071)	004/4.5.4.0	05 101 2040	47 Jul 2040	10 Jul 2010		47 Jul 2040	26 Aug 2010	
SB1/1.0-1.1,	SB1/1.5-1.6,	05-Jul-2019	17-Jul-2019	19-Jul-2019	1	17-Jul-2019	26-Aug-2019	✓
SB2/0.5-06,	QCP_5/7/19							
EP080/071: Total Recoverable Hydrocarbons - NI	EPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080)	05.440.44	05 1:1 2040	45 1:1 2040	40 1:1 0040		40 1.1 2040	40 101 0040	
SB1/0.075-0.125,	SB1/1.0-1.1,	05-Jul-2019	15-Jul-2019	19-Jul-2019	✓	16-Jul-2019	19-Jul-2019	✓
SB1/1.5-1.6,	SB2/0.5-06,							
QCP_5/7/19,	TB_5/7/19							
Soil Glass Jar - Unpreserved (EP071) SB1/0.075-0.125		05-Jul-2019	16-Jul-2019	19-Jul-2019	1	17-Jul-2019	25-Aug-2019	1
Soil Glass Jar - Unpreserved (EP071)					_		_	•
SB1/1.0-1.1,	SB1/1.5-1.6,	05-Jul-2019	17-Jul-2019	19-Jul-2019	1	17-Jul-2019	26-Aug-2019	/
SB2/0.5-06,	QCP_5/7/19							
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
SB1/0.075-0.125,	SB1/1.0-1.1,	05-Jul-2019	15-Jul-2019	19-Jul-2019	✓	16-Jul-2019	19-Jul-2019	✓
SB1/1.5-1.6,	SB2/0.5-06,							
QCP_5/7/19,	TB_5/7/19							
Matrix: WATER					Evaluation	: 🗷 = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ð	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)								
RB_5/7/19		05-Jul-2019	12-Jul-2019	12-Jul-2019	1	15-Jul-2019	21-Aug-2019	✓
Amber VOC Vial - Sulfuric Acid (EP080)		05 1:1 2040	46 1:1 2040	40 101 0040		46 1 2040	40 101 0040	
RB_5/7/19		05-Jul-2019	16-Jul-2019	19-Jul-2019	√	16-Jul-2019	19-Jul-2019	✓
EP080/071: Total Recoverable Hydrocarbons - NI	EPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)		05-Jul-2019	12-Jul-2019	12-Jul-2019		15-Jul-2019	21-Aug-2019	
RB_5/7/19		U3-JUI-2019	12-Jul-2019	12-Jul-2019	✓	15-Jul-2019	21-Muy-2019	✓
Amber VOC Vial - Sulfuric Acid (EP080) RB_5/7/19		05-Jul-2019	16-Jul-2019	19-Jul-2019	1	16-Jul-2019	19-Jul-2019	1
EP080: BTEXN								-
Amber VOC Vial - Sulfuric Acid (EP080)								
RB_5/7/19		05-Jul-2019	16-Jul-2019	19-Jul-2019	1	16-Jul-2019	19-Jul-2019	✓

Page : 5 of 9 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL

Matrix: SOIL				Evaluatio	n: 💌 = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type			ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Benzo(a)pyrene- Waste Classification (TAS	EP075-TAS	1	1	100.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
requirements)							
Exchangeable Cations	ED007	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	5	20.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
pH in soil using a 0.01M CaCl2 extract	EA001	2	12	16.67	10.00	1	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	9	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Fluoride	EK040T	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	4	29	13.79	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	_	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Benzo(a)pyrene- Waste Classification (TAS	EP075-TAS	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
requirements)							
Exchangeable Cations	ED007	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	13	7.69	5.00		NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	5	20.00	5.00		NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	9	11.11	5.00		NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Fluoride	EK040T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	29	6.90	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Benzo(a)pyrene- Waste Classification (TAS	EP075-TAS	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
requirements)							
Exchangeable Cations	ED007	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
				1		_	·

Page : 6 of 9 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Matrix: SOIL				Evaluatio	n: 🗷 = Quality Co	ntrol frequency	not within specification ; ✓ = Quality Control frequency within specificat
Quality Control Sample Type			ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Organic Matter	EP004	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Fluoride	EK040T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	2	29	6.90	5.00	1	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
esticides by GCMS	EP068	1	5	20.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
olychlorinated Biphenyls (PCB)	EP066	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Fluoride	EK040T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	/	NEPM 2013 B3 & ALS QC Standard
Fotal Metals by ICP-AES	EG005T	2	20	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
FRH - Semivolatile Fraction	EP071	2	29	6.90	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	n: x = Quality Co	ntrol frequency	not within specification ; ✓ = Quality Control frequency within specificat
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
RH - Semivolatile Fraction	EP071	1	14	7.14	10.00	*	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
RH - Semivolatile Fraction	EP071	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
							LUEDIA COLO DO A ALO DO CL.
RH - Semivolatile Fraction	EP071	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
	EP071 EP080	1	14	7.14 5.26	5.00	<i>'</i>	NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX							
FRH - Semivolatile Fraction FRH Volatiles/BTEX Matrix Spikes (MS) FRH - Semivolatile Fraction							

Page : 7 of 9 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001	SOIL	In house: Referenced to Rayment and Lyons (2011) 4B3 (mod.) or 4B4 (mod.) 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM (2013) Schedule B(3)
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Soil Particle Density	EA152	SOIL	Soil Particle Density by AS 1289.3.5.1-2006: Methods of testing soils for engineering purposes - Soil classification tests - Determination of the soil particle density of a soil - Standard method
Exchangeable Cations on Alkaline Soils	* ED006	SOIL	In house: Referenced to Soil Survey Test Method C5. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with alcoholic ammonium chloride at pH 8.5. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil.
Exchangeable Cations	ED007	SOIL	In house: Referenced to Rayment & Lyons (2011) Method 15A1. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Exchangeable Cations with pre-treatment	ED008	SOIL	In house: Referenced to Rayment & Higginson (2011) Method 15A2. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Hexavalent Chromium by Alkaline Digestion and DA Finish	EG048G	SOIL	In house: Referenced to USEPA SW846, Method 3060A. Hexavalent chromium is extracted by alkaline digestion. The digest is determined by photometrically by automatic discrete analyser, following pH adjustment. The instrument uses colour development using dephenylcarbazide. Each run of samples is measured against a five-point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)

Page : 8 of 9 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Analytical Methods	Method	Matrix	Method Descriptions
Total Cyanide by Segmented Flow Analyser	EK026SF	SOIL	In house: Referenced to APHA 4500-CN C / ASTM D7511. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM (2013) Schedule B(3)
Total Fluoride	EK040T	SOIL	(In-house) Total fluoride is determined by ion specific electrode (ISE) in a solution obtained after a Sodium Carbonate / Potassium Carbonate fusion dissolution.
Organic Matter	EP004	SOIL	In house: Referenced to AS1289.4.1.1 - 1997. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3).
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
Benzo(a)pyrene- Waste Classification (TAS requirements)	EP075-TAS	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 502)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A. The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
NaOH leach for CN in Soils	CN-PR	SOIL	In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH.
pH in soil using a 0.01M CaCl2 extract	EA001-PR	SOIL	In house: Referenced to Rayment and Higginson 4B1, 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM (2013) Schedule B(3) (Method 103)

Page : 9 of 9 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Preparation Methods	Method	Matrix	Method Descriptions
Exchangeable Cations Preparation Method (Alkaline Soils)	ED006PR	SOIL	In house: Referenced to Rayment and Lyons 2011 method 15C1.
Exchangeable Cations Preparation Method	ED007PR	SOIL	In house: Referenced to Rayment & Higginson (1992) method 15A1. A 1M NH4Cl extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble saits. Extracts can be run by ICP for cations.
Alkaline digestion for Hexavalent Chromium	EG048PR	SOIL	In house: Referenced to USEPA SW846, Method 3060A.
Total Fluoride	EK040T-PR	SOIL	In house: Samples are fused with Sodium Carbonate / Potassium Carbonate flux.
1:5 solid / water leach following drying at 40°C	EN34-AD	SOIL	10 g of 40°C dried soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Organic Matter	EP004-PR	SOIL	In house: Referenced to AS1289.4.1.1 - 1997. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3) (Method 105)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Tumbler Extraction of Solids - VIC EPA Screen	ORG17-EM	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

Automated Guideline Comparison Report

EPA Tasmania Information Bulletin No. 105 - Table 2: Soil Hazard Categorisation

Work Order	: EM1910802	Page	: 1 of 8
Client	ENVIRONMENTAL MANAGEMENT & CONSULTING P/L	Laboratory	: Environmental Division Melbourne
Contact Address	: MR SIMON CHISLETT : LEVEL 2 BIGGENS BUILDING 67 LETITIA STREET NORTH HOBART TASMANIA, AUSTRALIA 7000	Address	: 4 Westall Rd Springvale VIC Australia 3171
E-mail	: simon@enviromac.com.au	E-mail	: ALSEnviro.Melbourne@alsglobal.com
Telephone	: +61 0408 391 738	Telephone	: +61-3-8549 9600
Facsimile	: +61 03 6231 5979	Facsimile	: +61-3-8549 9626
Project	: EMC1927	Date Received	: 09-Jul-2019 14:35
Order number		Date Analysed	: 11-Jul-2019
C-O-C number		Date Issued	: 18-Jul-2019 18:29
No. of samples received	: 7		
No. of samples analysed	: 7	Quote number	: EN/222

General Comments

This guideline comparison report **only** provides comparison of reported result against limit thresholds for the 'Fill Material', 'Low Level Contaminated Soil', and 'Contaminated Soil' categories in Table 2 of EPA Tasmania Information Bulletin No. 105.

This guideline comparison report is **NOT** a compliance report. Classification of soils requires consideration of a number of other factors including preliminary site investigation, sampling density and statistical calculations and measurement uncertainty.

This guideline comparison report only provides comparison data for parameters, specifically listed within Table2 of the EPA Tasmania Information Bulletin No. 105, that are analysed by ALS.

te into account measurement uncertainty. Where a result is required to meet compliance limits, the associated uncertainty **must be** considered. Refer to the ALS Contract

Only results in the 'Analytical Results' section have been compared to the guideline.

Additional information pertinent to this report will be found in the following separate attachments: Certificate of Analysis, Quality Control Report, QA/QC Compliance Assessment to Assist with Quality Review and Sample Receipt Notification.

Page : 2 of 8 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Summary of Thresholds Reached or Exceeded

TAS EPA Bulletin No. 105 (2012)

Table 2: Maximum Total Concentration: Fill Material - Level 1

	Client Sample ID	ALS Sample ID	Compound	Method	LOR	Limits	Result
!	SB1/0.075-0.125	EM1910802-001	Benzo(a)pyrene	EP075-TAS	0.05	< 0.08 mg/kg	0.13 mg/kg

Page : 3 of 8 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Analytical Results

Classification and Management of Contaminated Soil for Disposal

Table 2 Maximum total conc. - Contaminated Soil: Table 2: Maximum Total Concentration: Contaminated Soil - Level 3

Table 2 Maximum total conc Contaminated Soil	. Table 2. Maximum Total			atou Son - E	C7 C7 S				
Sub-Matrix: SOIL		Clier	nt sample ID			SB1/0.075-0.1	 		
						25			
		Sampling	g date/time	Guideline	Guideline	05-Jul-2019	 		
						15:00			
Compound	Method	LOR	Unit	Lower Limit	Upper Limit	EM1910802-001 MU			
'	weulou	2071	Oille	Lillic	Lillic				
EG005(ED093)T: Total Metals by ICP-AES Arsenic	FCOOFT	5	mg/kg		750	<5	 I	I	l
Barium	EG005T	10	mg/kg		30000	40			
Beryllium	EG005T	1	mg/kg		400	40 ±4	 		
	EG005T	1			400	<1	 		
Cadmium	EG005T		mg/kg				 		
Chromium	EG005T	2	mg/kg		5000	5 ± 0.7	 		
Cobalt	EG005T	2	mg/kg		1000	9 ±1	 		
Copper	EG005T	5	mg/kg		7500	72 ± 9	 		
Lead	EG005T	5	mg/kg		3000	<5	 		
Manganese	EG005T	5	mg/kg		25000	213 ± 21	 		
Molybdenum	EG005T	2	mg/kg		4000	<2	 		
Nickel	EG005T	2	mg/kg		3000	11 ± 1	 		
Selenium	EG005T	5	mg/kg		200	<5	 		
Silver	EG005T	2	mg/kg		720	<2	 		
Tin	EG005T	5	mg/kg		900	<5	 		
Zinc	EG005T	5	mg/kg		50000	29 ± 4	 		
EG035T: Total Recoverable Mercury by FIMS									
Mercury	EG035T	0.1	mg/kg		110	<0.1	 _		
EG048: Hexavalent Chromium (Alkaline Digest)									
Hexavalent Chromium	EG048G	0.5	mg/kg		2000	<0.5	 		
EK026SF: Total CN by Segmented Flow Analyser	<u>'</u>								
Total Cyanide	EK026SF	1	mg/kg		2500	<1	 	_	
EK040T: Fluoride Total									
Fluoride	EK040T	40	mg/kg		10000	110 ± 30	 		
EP066: Polychlorinated Biphenyls (PCB)									
Total Polychlorinated biphenyls	EP066	0.1	mg/kg		50	<0.1	 	-	
EP068A: Organochlorine Pesticides (OC)									
Sum of Aldrin + Dieldrin	EP068	0.05	mg/kg		50	<0.05	 		
Sum of DDD + DDE + DDT	EP068	0.05	mg/kg		1000	<0.05	 		
EP075(SIM)A: Phenolic Compounds									
Sum of Phenois	EP075(SIM)	0.5	mg/kg		2000	<0.5	 		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons									
Sum of polycyclic aromatic hydrocarbons	EP075(SIM)	0.5	mg/kg		200	<0.5	 		

Page : 4 of 8 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Classification and Management of Contaminated Soil for Disposal

Table 2 Maximum total conc. - Contaminated Soil: Table 2: Maximum Total Concentration: Contaminated Soil - Level 3

	Clie	nt sample ID			SB1/0.075-0.1				
					25				
Sampling date/time					05-Jul-2019				
					15:00				
			Lower	Upper	EM1910802-001 MU				
Method	LOR	Unit	Limit	Limit					
EP075-TAS	0.05	mg/kg		20	0.13				
EP080	10	mg/kg		1000	<10				
EP071	50	mg/kg		10000	<50				
EP080	0.2	mg/kg		50	<0.2				
EP080	0.5	mg/kg		1000	<0.5				
EP080	0.5	mg/kg		1080	<0.5				
EP080	0.5	mg/kg		1800	<0.5				
	EP075-TAS EP080 EP071 EP080 EP080 EP080 EP080	Method LOR EP075-TAS 0.05 EP080 10 EP071 50 EP080 0.2 EP080 0.5 EP080 0.5 EP080 0.5	Method LOR Unit EP075-TAS 0.05 mg/kg EP080 10 mg/kg EP071 50 mg/kg EP080 0.2 mg/kg EP080 0.5 mg/kg EP080 0.5 mg/kg EP080 0.5 mg/kg	Sampling date/time Guideline	Sampling date/time Guideline Guideline Lower Limit Limit Limit	Sampling date/time Guideline Guideline Guideline Guideline Lower Limit Limit Limit Limit EM1910802-001 MU EM1910802-001 MU	Sampling date/time Guideline Guideline Guideline Guideline Sampling date/time Guideline Guideline Upper 15:00 EM1910802-001 MU	Sampling date/time Cuideline Cuideline Cuideline	Sampling date/time Guideline Guideli

Page : 5 of 8 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

ALS

Classification and Management of Contaminated Soil for Disposal

Table 2 Maximum total conc. - Fill Material: Table 2: Maximum Total Concentration: Fill Material - Level 1

Sub-Matrix: SOIL		Clie	nt sample ID			SB1/0.075-0.1 25	 		
		Samplin	g date/time	Guideline	Guideline	05-Jul-2019 15:00	 	****	
				Lower	Upper	EM1910802-001 MU			
Compound	Method	LOR	Unit	Limit	Limit				
EG005(ED093)T: Total Metals by ICP-AES									
Arsenic	EG005T	5	mg/kg		20	<5	 		
Barium	EG005T	10	mg/kg		300	40 ± 4	 		
Beryllium	EG005T	1	mg/kg		2	<1	 		
Cadmium	EG005T	1	mg/kg		3	<1	 		
Chromium	EG005T	2	mg/kg		50	5 ± 0.7	 		
Cobalt	EG005T	2	mg/kg		100	9 ±1	 		
Copper	EG005T	5	mg/kg		100	72 ±9	 		
Lead	EG005T	5	mg/kg		300	<5	 		
Manganese	EG005T	5	mg/kg		500	213 ± 21	 		
Molybdenum	EG005T	2	mg/kg		10	<2	 		
Nickel	EG005T	2	mg/kg		60	11 ±1	 		
Selenium	EG005T	5	mg/kg		10	<5	 		
Silver	EG005T	2	mg/kg		10	<2	 		
Tin	EG005T	5	mg/kg		50	-5	 		
Zinc	EG005T	5	mg/kg		200	30	 		
EG035T: Total Recoverable Mercury by FIMS	200031		ing ng			29 ± 4			
Mercury	EG035T	0.1	mg/kg		1 1	<0.1	 l	l	l
EG048: Hexavalent Chromium (Alkaline Digest)	200331								
Hexavalent Chromium	EG048G	0.5	mg/kg		1 1	<0.5	 l	l	
EK026SF: Total CN by Segmented Flow Analyser	200400	0.0	11197119		<u> </u>	0.0			
Total Cyanide	EK026SF	1	mg/kg		32	<1	 l	I	
EK040T: Fluoride Total	LNOZOSI	<u> </u>							
Fluoride	EK040T	40	mg/kg		300	110 + 20	 l	l	l
EP066: Polychlorinated Biphenyls (PCB)	LICOTOT					110 ± 30			
Total Polychlorinated biphenyls	EP066	0.1	mg/kg		2	<0.1	 l	l	
EP068A: Organochlorine Pesticides (OC)	2, 000						l		
Sum of Aldrin + Dieldrin	EP068	0.05	mg/kg		2	<0.05	 l	I	
Sum of DDD + DDE + DDT	EP068	0.05	mg/kg		2	<0.05	 		
EP075(SIM)A: Phenolic Compounds	L1 000	7.00							
Sum of Phenois	EP075(SIM)	0.5	mg/kg		25	<0.5	 l	l	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	LI 073(31W)								
Sum of polycyclic aromatic hydrocarbons	EP075(SIM)	0.5	mg/kg		20	<0.5	 l		
EP075B: Polynuclear Aromatic Hydrocarbons	LI VI O(OIM)	1							
Erorab. Polyhucieal Aloillauc Hydrocalbolis									

Page : 6 of 8 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

Classification and Management of Contaminated Soil for Disposal

Table 2 Maximum total conc. - Fill Material: Table 2: Maximum Total Concentration: Fill Material - Level 1

Tubic 2 Muximum total conc Fill Mutchal. Tu	DIC 2. MUXIMUM TOTAL CONCOL	dudon. i in	Waterial - Le	V C I I				
Sub-Matrix: SOIL		Clie	nt sample ID			SB1/0.075-0.1	 	
						25		
		Samplin	g date/time	Guideline	Guideline	05-Jul-2019	 	
						15:00		
				Lower	Upper	EM1910802-001 MU		
Compound	Method	LOR	Unit	Limit	Limit			
EP075B: Polynuclear Aromatic Hydrocarbons - Con	tinued							
Benzo(a)pyrene	EP075-TAS	0.05	mg/kg		0.08	0.13	 	
EP080/071: Total Petroleum Hydrocarbons								
C6 - C9 Fraction	EP080	10	mg/kg		65	<10	 	
C10 - C36 Fraction (sum)	EP071	50	mg/kg		1000	<50	 	
EP080: BTEXN	•							
Benzene	EP080	0.2	mg/kg		1	<0.2	 	
Toluene	EP080	0.5	mg/kg		1	<0.5	 	
Ethylbenzene	EP080	0.5	mg/kg		3	<0.5	 	
Total Xylenes	EP080	0.5	mg/kg		14	< 0.5	 	

Page : 7 of 8 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

ALS

Classification and Management of Contaminated Soil for Disposal

Table 2 Maximum total conc. - Low Level Contaminated Soil: Table 2: Maximum Total Concentration: Low Level Contaminated Soil - Level 2

	nateu Son. Table 2. Maxii			2017 20107	-			
Sub-Matrix: SOIL		Clie	nt sample ID			SB1/0.075-0.1 25	 	
		Samplin	g date/time	Guideline	Guideline	05-Jul-2019 15:00	 	
				Lower	Upper	EM1910802-001 MU		
Compound	Method	LOR	Unit	Limit	Limit			
EG005(ED093)T: Total Metals by ICP-AES								·
Arsenic	EG005T	5	mg/kg		200	<5	 	
Barium	EG005T	10	mg/kg		3000	40 ± 4	 	
Beryllium	EG005T	1	mg/kg		40	<1	 	
Cadmium	EG005T	1	mg/kg		40	<1	 	
Chromium	EG005T	2	mg/kg		500	5 ± 0.7	 	
Cobalt	EG005T	2	mg/kg		200	9 ±1	 	
Copper	EG005T	5	mg/kg		2000	72 ± 9	 	
Lead	EG005T	5	mg/kg		1200	<5	 	
Manganese	EG005T	5	mg/kg		5000	213 ± 21	 	
Molybdenum	EG005T	2	mg/kg		1000	<2	 	
Nickel	EG005T	2	mg/kg		600	11 ±1	 	
Selenium	EG005T	5	mg/kg		50	<5	 	
Silver	EG005T	2	mg/kg		180	<2	 	
Tin	EG005T	5	mg/kg		500	<5	 	
Zinc	EG005T	5	mg/kg		14000	29 ± 4	 	
EG035T: Total Recoverable Mercury by FIMS								
Mercury	EG035T	0.1	mg/kg		30	<0.1	 	
EG048: Hexavalent Chromium (Alkaline Digest)							'	
Hexavalent Chromium	EG048G	0.5	mg/kg		200	<0.5	 	
EK026SF: Total CN by Segmented Flow Analyser								
Total Cyanide	EK026SF	1	mg/kg		1000	<1	 	
EK040T: Fluoride Total								
Fluoride	EK040T	40	mg/kg		3000	110 ± 30	 	
EP066: Polychlorinated Biphenyls (PCB)								
Total Polychlorinated biphenyls	EP066	0.1	mg/kg		20	<0.1	 	
EP068A: Organochlorine Pesticides (OC)								
Sum of Aldrin + Dieldrin	EP068	0.05	mg/kg		20	<0.05	 	
Sum of DDD + DDE + DDT	EP068	0.05	mg/kg		200	<0.05	 	
EP075(SIM)A: Phenolic Compounds								
Sum of Phenois	EP075(SIM)	0.5	mg/kg		500	<0.5	 	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Sum of polycyclic aromatic hydrocarbons	EP075(SIM)	0.5	mg/kg		40	<0.5	 	
EP075B: Polynuclear Aromatic Hydrocarbons								

Page : 8 of 8 Work Order : EM1910802

Client : ENVIRONMENTAL MANAGEMENT & CONSULTING P/L

Project : EMC1927

ALS

Classification and Management of Contaminated Soil for Disposal

Table 2 Maximum total conc. - Low Level Contaminated Soil: Table 2: Maximum Total Concentration: Low Level Contaminated Soil - Level 2

Table 2 Maximum total conc Low Level Contain	iiriateu 30ii. Tabie 2. Waxiiii	um rotar c	oncenti ation	. LOW LEVE!	Contaminate	u Jon - Level 2		
Sub-Matrix: SOIL		Clie	nt sample ID			SB1/0.075-0.1	 	
						25		
		Samplin	g date/time	Guideline	Guideline	05-Jul-2019	 	
						15:00		
				Lower	Upper	EM1910802-001 MU		
Compound	Method	LOR	Unit	Limit	Limit			
EP075B: Polynuclear Aromatic Hydrocarbons - Contin	ued							
Benzo(a)pyrene	EP075-TAS	0.05	mg/kg		2	0.13	 	
EP080/071: Total Petroleum Hydrocarbons								
C6 - C9 Fraction	EP080	10	mg/kg		650	<10	 	
C10 - C36 Fraction (sum)	EP071	50	mg/kg		5000	<50	 	
EP080: BTEXN								
Benzene	EP080	0.2	mg/kg		5	<0.2	 	
Toluene	EP080	0.5	mg/kg		100	<0.5	 	
Ethylbenzene	EP080	0.5	mg/kg		100	<0.5	 	
Total Xylenes	EP080	0.5	mg/kg		180	<0.5	 	

Appendix D

Assessment Data Quality Indicator (DQI) Checklist

Data Quality Indicatiors Checklis

List the labor	atory batch numbers in the reporting period to which this DQI checklist relates			
Report ID	Report Description	Repo	rt Issue	e Date
EM1910802	as the EM&C Standard Operating Procedure for sampling used? mments: as the EM&C Standard Operating Procedure for sampling used? mments: as the consistent sample types collected according to SAQP? mments: as conducting the sampling? mments: bo was conducting the sampling? mments: Soil sampling was conducted by Alex Lovibond & Simon Chislett. as the same laboratory and laboratory method used? mments: we the same units of measurement been used?		18/7/1	L9
		Yes	No	NA
Are all labora	tory reports included within EM&C report as an appendix?			
Comments: SI	RN, CoA, QC, QCI and CoC supplied			
Comparability	(the confident expressed qualitatively that data may be considered to be equivaler	t for e	ach	
sampling and	analytical event)			
		Yes	No	NA
Was the EM8	C Standard Operating Procedure for sampling used?			
Comments:				
Were consist	ent sample types collected according to SAQP?			
Comments:				
Who was con	ducting the sampling?			
Comments: S	oil sampling was conducted by Alex Lovibond & Simon Chislett.			
Was the same	laboratory and laboratory method used?			
Comments:				
Have the sam	e units of measurement been used?			
Comments:				
Were climate	conditions recorded? (if relevant)			
Comments:				

Data Quality Indications Checklis

Precision (a qu	antitative me	easure of th	ne variability	(or reprodu	cibility) of d	ata)				
								Yes	No	NA
Is the blind du	plicate/split I	D generic a	nd does it n	ot reveal the	reference s	ample ID?				
Comments:										
Is RPD within (0-50% for sam	ples with o	concentratio	ns >10*LOR	and within 1	L00% for san	nples with			
concentration	<10*LOR:									
Comments: See	e Table 3 for f	ull RPD ana	ılysis							
Has the Prima	ry laboratory	QA/QC rep	orted any ar	nomalies?						
Comments: Wh	here outliers e	exist, comm	nents will be	provided bel	ow the repo	ort ID				
			Intra Lab QCS			Analysis Holding Time	Frequency of Intra Lab QC Samples			
Report ID	Lab Method Blank	Lab Control	Matrix Spike	Lab Duplicate	Surrogate Recovery	Holding Time breach	Frequency Breach	Repo	rt Issu	e Date
EM1910802	No	No	No	No	No	No	Yes	1	18/7/1	19
Frequency of Intra	Lab QC Samples	s: EP071: TRH	- Semivolatile F	raction: Intra Lab	Quality Control	Sample Freque	ncy Outliers exis	t. Not e	nough	

duplicate sample bottles provided for intra lab duplicate and/or QC mattx spike testing. This result may be due to standard laboratory practice of running samples through in 'analytical lots'. This practise may involve splitting EM&Cs submitted samples over multiple analytical lots. EM&C have no control over the number of intra lab duplicates in which their samples are analysed, other than providing additional sample bottles at the specified frequency. Even when this practice is observed, the splitting of EM&Cs sample bottles over multiple 'analytical lots' may result in a non compliance, due to a lack of frequency of quality control samples provided to the laboratory. EM&C do not consider this to reduce the reliability of the dataset.

Accuracy (a quantitative measure of the closeness of the reported data to the true value)			
	Yes	No	NA
Was the field equipment calibrated?			
Comments: See Calibration Certificates Attached in Appendix E			
Have trip, field and rinsate samples been collected?			
Comments: Rinsate and trip blanks were utilised. A field blank sample was deemed to be unrequired	by EN	л&С.	

Representativeness (the confidence expressed qualitatively that are representative of each media type present on the site under investigation)								
	Yes	No	NA					
Has the appropriate media been sampled and analysed in accordance with the SAQP?								
Comments:								
Has all media identified in the SAQP been sampled?								
Comments:								
Have Chain of Custodies been completed?								
Comments:								
Have the samples been collected in the appropriate containers?								
Comments:								
Have the samples been stored, preserved and handled appropriately and received at the laboratory at acceptable temperature?								
Comments:								

Data Quality Indications Checklis

			<u>ٽ</u> .	
Has any contamination been identified in blank samples?	ENVIRONMENTAL MANAGEMENT 8	& CONS		PTY LT
Comments:	•			
Have any uncertainties been identified in:				
Sampling methods				
Comments:				
Laboratory Methods				
Comments:				
Groundwater well integrity or network				
Comments:				
Soil vapour bore integrity				
Comments:				

Completeness (a measure of the amount of usable data contributing to the entire data set)								
	Yes	No	NA					
Have all critical site locations been sampled in accordance with the SAQP?								
Comments:								
Has the Technical Holding Times been met?								
Comments:								
Is field and laboratory documentation correct, legible and authorised by signature and date?								
Comments:								

Acceptable
Acceptable, irragularities has been noted
Not accentable

Appendix E

Assessment Field Logs and Calibration Certificates

SCREENING OF SOILS - FIELD LOG

Site Name:	McRobies Landfill	Logged by: SC	Date:	5	17	19
Site Address	South Hobart					
Job No:	EMC1927					

Sample location sketch

Sit Arrestor Pit
A sorth ~1.5m Rbs.

Franciscol
30002 Concade
Holding wieth
Peptr ~2.4m Rbs.

Sample ID	Soil Type	(N/F)	PID	LAB	Sample ID	Soil Type (N/F)	PID	LAE
					100			1
6				1				+
		_		+-				+
		_		-	The state of the			+
				_				
								_
								+
				-				-
					Carried Control			

Duplicate / Split	Samples ID	duplicate of	
Dupicate / Spit	Samples 10	duplicate of	
. Equipment ri	nsate ID	rinsate of	
. Equipment	isate ib	rinsate of	
Field blan	ik ID		
Trip blan	k ID		
Rinsate water # for	Semi volatile:	1 V	
misate water # for	Volatile:		

Soil	oil Bore ID: Site Name: McRobies Land								<u> </u>		(March .					n	26	
C72) Si		Site Add	dress:	Sout	h Hobart		T.		L.					ENTAL MANAGEMENT & CONSULTING PTYLED					
STS 1 Job No:			EMC	1927								Logged by:	AC	Date:	0/7	119	Mar Pit Lib		
Drilling Method Ø(mm) Depth (mBGS) Whand Auger 80 0 - 0 - 5			Depth (mBGS)	100000	d of abandonin	ng soil bore	ompact	DG G	Plasticity Range of		P 3000000000000000000000000000000000000	Characteristics d Gravel Only)	Moisture	Core/ Bagged PID	Water Level	mBGS	Graphical We		
V ND	4440 May 19 12 Carl	. ·	3000	0.5-2.0	Resurface with concrete		LG	Light Grey	t Grey Liquid Limit W		Well Graded	Content			n 1.				
☐ Hol	llow Aug	er			☐ Inst	all monitoring	well		DB.	Dark Brown	Low	<35%	Р	Poorly Graded	Dry	1 7			
□ Con	ncrete Sa	w			☐ Inst	all soil vapour	point		9.	Brown	Medium	>35% - <50%	G	Gap Graded	Moist	I		7	
	. L.				□ Bac	kfilled with vi	rgin material		LB	Light Brown	High	>50%	U	Uniform	Wet	- 7		7	
	11.				1 Bac	efelled with	th Gravel 5	ping HCC.	0	Orange						I			
Depth	(mBGS)		Soil Classification	on	USCS	Plactisity/		Moisture	2-14				Analysed/				72.11		
From	To	Dominant soil component	Descriptive soil component	Other minor soil component	Group letters	Particle (USDA) charateristics	Colour	(see field guide)	Consistency	Sampl	e ID	Bagged PID	QC sample	Well Dev	elopment				
0.0	0.05	BITUMEN								0.075	0.125	00	Y/QCP	By:			Lat		
				M-csand	Sω	wa	G	wha		0.5-	0.6	0.0	No	Date:				. 2.7	
				C.Sant		we	G	wel#	-8.0	1.0-1	.1	0.0	4	Method:				- 1	
		1							(S. 144)	1.5-1		0.0	ч	Initial DTW:	/		15		
														Purge Volume: Post purge DTV: Estimated regiarge rate:					
														Well Constru	tion Details				
														Concrete: Bentonite:	/			-	
							.5U -1						34	Sand:		-		+	
				التقير	144				1111				,	Screen interval:				1	
(mm):	diamete	elow ground s er in millimetre uctive drilling		Comments:	Not	Assessi Soil	NOD ABLE BET MATK	cotting roud x	meth 6, NOI	pod ADV	ANCE	MENT UEL,		Notes: Concret Bentoni Sand Well cas	te				Vater pelow top of
						FINE EARTI	1							Rock Fr					241
US	DA	CLAY		SILT				SAND				GRAVEL		COBBLES STONES			В	OULDE	RS
Max pa	article	0.0002	Coarse 0.002	7 Fine 0.02	Coarse 0.05	V.fine 0.1	Fine 0.25	Med 0.5	Coarse	V.Coarse	Fine	Medium 20	Coarse 76	250	600				N/

Soil	Bore I	ID:	Site Nan	ne:	McR	obies Lan	dfill			"		(gen-1					RC
0			Site Add	ress:	Sout	h Hobart									ENVIRONME	NTAL MANAGEME	NT & GONSUL	TING PTY LTD
>1	32	h	Job No:		EMC	1927				714 0	JLT.	, 10°, 10 h		Logged by:	AL	Date: 5	7/19	
	Method		Ø(mm)	Depth (mBGS)		d of abandonia	ng soil bore	omnact	DG G	Dark Grey Grey	Plasticity	Range of		Characteristics d Gravel Only)	Moisture	Core/ Bagged PID Wate	mBGS	Graphical We Construction
□ NDI					100	urface with co			LG	Light Grey		Liquid Limit	w	Well Graded	Content			
Hol	low Aug	er			☐ Inst	all monitoring	well		DB	Dark Brown	Low	<35%	Р	Poorly Graded	Dry]]		
	crete Sa	ıw	•		☐ Inst	all soil vapour	point		В	Brown	Medium	n >35% - <50%	G	Gap Graded	Moist			hat - Cit
- ·	000	- 1	300	0-40		kfilled with vi	rgin material	Supy. H.CC	LB	Light Brown Orange	High	>50%	U	Uniform	Wet	-	1	
Depth	(mBGS)		ioil Classification	n La la	uscs	Plactisity/		Moisture	P-1	16 J	-4-1		Analysed/			1 1		
From	To	Dominant soil component	Descriptive soil component	Other minor soil component	Group letters	Particle (USDA) charateristics	Colour	(see field guide)	Consistency	Sampl	e ID	Bagged PID	QC sample	Well Dev	elopment]		
	0-05	BITYMEN			3			4		582.	16.58	60.0	4	By:	11-7			
.05	.02	MGRAVEZ				w.G	G	wet						Date:				
			M-F. Sand			w.G	B G	wet*				. 104	والمحتفر	Method:	/			
6.6	0.9	M.GRAVEL	P.Gravel	C.Sand	Sw	wiG	G	wet?		N 100				Initial DTW:	*	- 1	-	
														Purge Volume:		44	-	
														Post purge				
	1.0	POB	609	Rolasa	1 +	סט פ	0							DTW.				
Τ.	-0			100		[]		100	11 8 ",					Estimated			-	
		art.		n Th		FI				1	J-1	1	II	recharge rate:				
	. T.													Well Construc	ction Details		4-	
					Ē				8			-1,		Concrete:	/.			- 1
	1-14		1-1-1		10.15	7 P (1							4	Bentonite:	-			
				Live	1				-17 -si			*F.77	3501	Sand;				
11						ال , - ا	' . E - I					17-5		Screen Interval:	15			
lotes:	netres b	elow ground s	urface	Comments:			2							Notes: Concret	e	DTW:	Depth to	Water
(mm):	diamete	er in millimetre uctive drilling		gravel	between	en o.b.	o.a diffi	alt to	* wel	that.	O NI	od Drill	ing	Bentoni Sand Well cas	te	mBTO well o		below top of
				SILT	1-0	FINE EARTI	Н								agments			
US	DA		CLAY			I	-	SAND		GRAVEL			COBBLES STONES		BOULDERS			
Max pa	article	0.0002	Coarse 0.002	Fine 0.02	Coarse 0.05	V.fine 0.1	Fine 0.25	Med 0.5	Coarse	V.Coarse	Fine 5	Medium 20	Coarse 76	250	600			N,

CALIBRATION CERTIFICATE

Make: Honeywell	Calibration Date: 1/2/19
Model: Impact Pro	Machine Reading: Calibration Due in
	180 days
Serial No: ZEL1201176	Next Calibration Date: 31/7/19
Calibration Gas Supplier:	Honeywell
Calibration Gas ID:	Lot 206598
Calibration Gas Expiry Date:	September 2020
Calibration Gas Composition:	ISOBUTYLENE 100 ppm C ₄ H ₈
_	

Calibration Method

Unit calibrated in accordance with MiniRAE Operating Instructions and Maintenance Manual (the 'user manual').

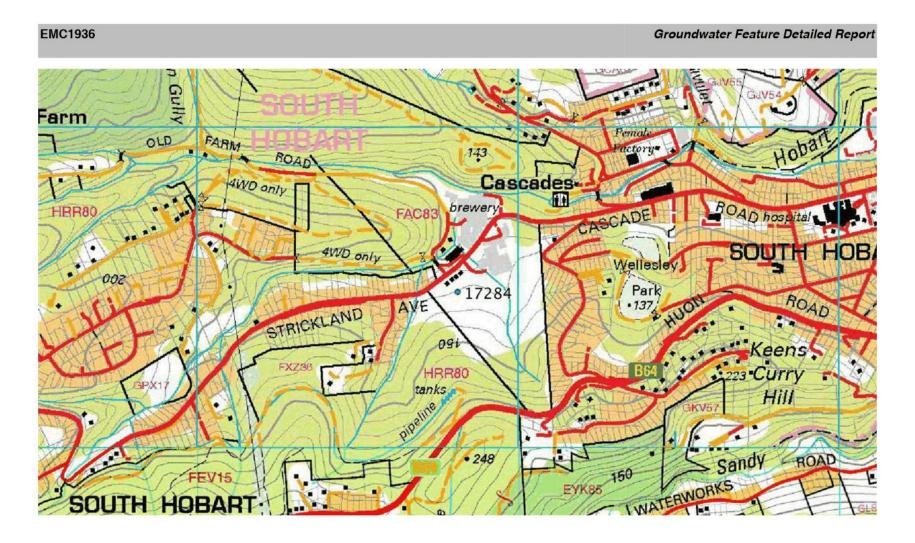
Method of calibration: Per section 4.4 of the user manual

Post calibration bump test reading of Calibration Gas

Isobutylene	Expected	Result
	100	100

Calibration completed by:

Simon Chislett


Competency: Gas Test Atmosphere, Course Code: MSAPMOHS217A

Signature

Date of Issue: 01/02/19

Appendix F

GIAP Search Results

Disclaimer and Copyright. Map data is compiled from a variety of sources and hence its accuracy is variable. If you wish to make decisions based on this data you should consult with professional advisers. Apart from any use permitted under the Copyright Act 1968, no part of this report may be copied without the permission of the General Manager, Water and Marine Resources Division, Department of Primary Industries, Parks, Water and Environment, PO Box 41, Hobart, TAS 7001.

EMC1936 Groundwater Feature
Detailed Report

Identification Feature id: 17284 Feature type: Bore

Location Locality: South Hobart

Easting: 523814 **Datum:** GDA94 **Northing:** 5250483 **Accuracy:** 200

Ground level (m

ASL):

Construction Date drilled: 14/03/1996

Drilling company: KMR Drilling Pty Ltd

Depth (metres): 60.00 Initial yield (L/sec): 0.63

Initial EC (µS/cm):

Bore diameters

From (m)	To (m)	Diameter (mm)	Drilling technique
0.0	60.0	190.00	Downhole Hammer (Rotary
			Hammer)

Casings

From (m)	To (m)	Inside diameter (mm)	Outside diameter (mm)	Material
0.0	60.0			unplasticised polyvinylchloride
				uPVC

Screens

From (m)	To (m)	Inlet type
		slotted casing

Seals

From (m)	To (m)	Material type	
N/A			

Geological / Hydrogeological Information

Lithological Log

Fi	rom (m)	To (m)	Lithological description
	0.0	3.0	clay
	3.0	60.0	mudstone sandstone

Depth to water struck

Date	From (m)	To (m)	Cumulative yield	
13/03/1996	48.0			0.63

Main aquifer geology: Final TDS (mg/L):

Triassic

Standing Water Levels

Standing water levels

Date	SWL (metres)
NA	

05/08/2019 Page 2

EMC1936	Groundwater Feature
	Detailed Report

Current status

Last recorded statuses

Туре	Value	Date recorded
function	capped	14/03/1996

05/08/2019 Page 3